Preferred Language
Articles
/
bsj-780
On Training Of Feed Forward Neural Networks
...Show More Authors

In this paper we describe several different training algorithms for feed forward neural networks(FFNN). In all of these algorithms we use the gradient of the performance function, energy function, to determine how to adjust the weights such that the performance function is minimized, where the back propagation algorithm has been used to increase the speed of training. The above algorithms have a variety of different computation and thus different type of form of search direction and storage requirements, however non of the above algorithms has a global properties which suited to all problems.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon May 25 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Strength Training and its Effect in Some Biochemical Variables in the High Jumping of Advanced Players
...Show More Authors

The study of biomechanical indicators in the arc of the run and the upgrading stage is one of the important variables that affect the nature of the upgrading and thus affect the result of the race due to the importance of these stages and the consequent variables during the last steps. That’s why, the jump-trainings based on assistant means or body weight positively affect the step-time for each of the three steps in the acceleration arc. As well as, it focuses on the momentary strength of each step at this stage. It also significantly affects the speed of motor performance to suit the activity in which the runner needs to perform perfect steps with high flow in order to convert the horizontal speed to a vertical one. This is achieved thr

... Show More
View Publication
Crossref
Publication Date
Sun Oct 19 2025
Journal Name
Lecture Notes In Networks And Systems
Utilizing Artificial Intelligence Tools in Enhancing Training of Trainers (ToT) Programs: Modern Approaches and Practical Applications
...Show More Authors

This study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Jul 09 2020
Journal Name
International Journal Of Psychosocial Rehabilitation
Strength Training and its Effect in Some Biochemical Variables in the High Jumping of Advanced Players
...Show More Authors

Publication Date
Thu Jan 15 2026
Journal Name
Biomed Visions Journal
Developing Pharmacy Education: Review of Virtual Reality Technology in Improving Clinical Training and Learning Skill Development
...Show More Authors

Incorporating modern technology into education is becoming imperative. Numerous pharmacy institutions are incorporating virtual reality (VR) technology training into their curricula to enhance educational experience. This review examines the current state, historical evolution, and application of VR programs in pharmacy education and training. The review also provides details about the main challenges and limitations associated with the use of this technology. The VR technology, including virtual laboratories and simulations, significantly improves clinical training and educational outcomes. The utilization of VR in clinical teaching encounters numerous barriers, including ethical concerns and technological constraints, as well as other res

... Show More
View Publication Preview PDF
Publication Date
Thu Apr 01 2021
Journal Name
Complexity
Bayesian Regularized Neural Network Model Development for Predicting Daily Rainfall from Sea Level Pressure Data: Investigation on Solving Complex Hydrology Problem
...Show More Authors

Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay

... Show More
View Publication
Scopus (20)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
An Energy-Aware and Load-balancing Routing scheme for Wireless Sensor Networks
...Show More Authors

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In

... Show More
View Publication Preview PDF
Scopus (28)
Crossref (11)
Scopus Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Sensors
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
...Show More Authors

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Sat Sep 27 2014
Journal Name
Soft Computing
Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks
...Show More Authors

View Publication
Scopus (30)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Parallel Particle Swarm Optimization Algorithm for Identifying Complex Communities in Biological Networks
...Show More Authors

    Identification of complex communities in biological networks is a critical and ongoing challenge since lots of network-related problems correspond to the subgraph isomorphism problem known in the literature as NP-hard. Several optimization algorithms have been dedicated and applied to solve this problem. The main challenge regarding the application of optimization algorithms, specifically to handle large-scale complex networks, is their relatively long execution time. Thus, this paper proposes a parallel extension of the PSO algorithm to detect communities in complex biological networks. The main contribution of this study is summarized in three- fold; Firstly, a modified PSO algorithm with a local search operator is proposed

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Data Aggregation in Wireless Sensor Networks Using Modified Voronoi Fuzzy Clustering Algorithm
...Show More Authors

Data centric techniques, like data aggregation via modified algorithm based on fuzzy clustering algorithm with voronoi diagram which is called modified Voronoi Fuzzy Clustering Algorithm (VFCA) is presented in this paper. In the modified algorithm, the sensed area divided into number of voronoi cells by applying voronoi diagram, these cells are clustered by a fuzzy C-means method (FCM) to reduce the transmission distance. Then an appropriate cluster head (CH) for each cluster is elected. Three parameters are used for this election process, the energy, distance between CH and its neighbor sensors and packet loss values. Furthermore, data aggregation is employed in each CH to reduce the amount of data transmission which le

... Show More
View Publication Preview PDF