In the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process utilizing the base set of 3–21G geometrical structures. The molecular geometry and contours for compounds with charge-transfer complexes have been evaluated during the process of geometrical optimization. By investigating the interactions between donor and acceptor, we have also been contrasting the energies (HOMO
energies) of the chemicals in charge-transfer complexes. For molecules containing charge-transfer complexes, the lower case, electronegativity, ionization potential, electron affinity, and electrophilicity have all been calculated and studied.
Around fifty isolates of Salmonella enterica serovar Typhi were isolated from blood specimens of patients referring to several hospitals in Kirkuk province, Iraq. The results revealed that all isolates developed resistance to trimethoprim-sulfamethoxazole and chloramphenicol. However, neither sul2 nor tem genes were detected. Moreover, only ten isolates were positive for catP. Our data suggested participation of other genes or mechanisms allow these multidrug isolates to resist the antibiotics in question.
The aim of this study was to improve the reproductive ability of native Iraqi chickens with the use of glycitein. The Studie was conducted on a of 120 Iraqi native chickens, consisting of 100 hens and 20 roosters. The chickens were 26 weeks old at the time of the study. The chickens were divided into four treatment groups, with each group consisting of 25 chicks. The experimental design consisted of four groups: the first group served as the non-injection control (referred to as T1), while the remaining groups (T2, T3, and T4) were treated with injections of glycitein at concentrations of 5, 10, and 15 mg/kg body weight, respectively. These injections were given subcutaneously in the
This paper is focused on orthogonal function approximation technique FAT-based adaptive backstepping control of a geared DC motor coupled with a rotational mechanical component. It is assumed that all parameters of the actuator are unknown including the torque-current constant (i.e., unknown input coefficient) and hence a control system with three motor control modes is proposed: 1) motor torque control mode, 2) motor current control mode, and 3) motor voltage control mode. The proposed control algorithm is a powerful tool to control a dynamic system with an unknown input coefficient. Each uncertain parameter/term is represented by a linear combination of weighting and orthogonal basis function vectors. Chebyshev polynomial is used
... Show MoreCarbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show More