In the current work various types of epoxy composites were added to concrete to enhance its effectiveness as a gamma- ray shield. Four epoxy samples of (E/clay/B4C) S1, (E/Mag/B4C) S2, (EPIL) S3 and (Ep) S4 were used in a comparative study of gamma radiation attenuation properties of these shields that calculating using Mont Carlo code (MCNP-5). Adopting Win X-com software and Artificial Neural Network (ANN), µ/ρ revealed great compliance with MCNP-5. By applying (µ/ρ) output for gamma at different energies, HVL, TVL and MFP have been also estimated. ANN technique was simulated to estimate (µ/ρ) and dose rates. According to the results, µ/ρ of all epoxy samples scored higher than standard concrete. Both S2 and S3 samples having higher values of µ/ρ, show minimum dose rate values. (µ/ρ) and RPE% values were enhanced, the concrete containing E/Mag/B4C (S2) had the best results, while the concrete containing Ep (S4) provide the worst results. The ANN prediction results take 15 sec for estimating gamma doses corresponding to seventeen shield thicknesses, while the theoretical MCNP-5 results took approximately between 7 to 10 hours for five gamma doses. ANN provides excellent predictions with a high degree of correlation depending on increasing the number of attenuation parameters used in the training process. Also, it predicts gamma dose rates for a large number of shield thicknesses that cannot be calculated theoretically in a very short time. This supports, the created epoxy composite offers good attenuation properties for many shielding applications and could be proposed as an injecting mortar for cracks in biological shields and the walls of diagnostic and radiotherapy rooms. However, further investigations are planned for different filler ratios, for comparison purposes, in order to reach optimal shielding properties
We present a simple model of charge transfer current through sensitizer N3 molecule contact to TiO2 and ZnO semiconductors to calculate the charge transfer current. The model underlying depends on the fundamental parameters of the charge transfer reaction and it is based on the quantum transition theory approach. A transition energy, driving energy and potential barrier have been taken into account charge transfer current at N3 / TiO2 and N3 / ZnO devices with wide polarity solvents Acetic acid, 2-Methoxyethanol, 1-Butanol, Methyl alcohol, chloroform, N,N-Dimethylacetamide and Ethyl alcohol via the quantum donor-acceptor system.The effects of the transition energy and potential barrier are computed and discussion on charge transfer current.
... Show MoreThe culturalization of gender action occupies a wide range in culture, thoughts and modern studies as well as in fine arts and the ways of expressing them.
Theater, as one of these arts, plays roles in establishing the fundamental concepts that aims at stating the uncontrollable deed of the social community. It remains one of the most effective and suitable means to confine the uncivilized practices to overcome a certain crisis after gender and cyborg in societies.
The research concentrates on studying the culturalization of gender action in the Iraqi theatrical address because of the effect it has on the modernizing thought in arts and theater literature. It consists of chapter one which deals w
... Show MoreRecently a large number of extensive studies have amassed that describe the removal of dyes from water and wastewater using natural adsorbents and modified materials. Methyl orange dye is found in wastewater streams from various industries that include textiles, plastics, printing and paper among other sources. This article reviews methyl orange adsorption onto natural and modified materials. Despite many techniques available, adsorption stands out for efficient water and wastewater treatment for its ease of operation, flexibility and large-scale removal of colorants. It also has a significant potential for regeneration recovery and recycling of adsorbents in comparison to other water treatment methods. The adsorbents described herein were
... Show More