Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy(EDX), the physico-chemical characterization of Y2O3NPs was examined. The primary characteristic peak of YOY at 565 cm-1, which indicates the synthesis of nanoparticles, is seen in the FT-IR spectra. The XRD pattern showed that a single phase cubic structure of YONPs with an Ia-3 space group had formed. SEM was used to examine the surface morphology. The composition of Yttrium and oxygen in Y2O3NPs was determined to be 78.74% and 21.26%, respectively, according to the EDX results. The anticorrosive behavior was tested by polarization curve in 18.204% CaCl2 solution at five temperatures in the range 293- 313 K. Various concentrations 0.15 0.26 and 0.37 of N Y2O3NPs coating on the carbon steel surface were applied using the electrophoresis deposition method. The obtained results indicated that Y2O3NPs formed a protective film acts as a physical barrier for the protection of steel alloy. Additionally, corrosion protection efficiency values of 0.26 N Y2O3NPs coating were superior to that of 0.15 and 0.37 N Y2O3NPs coating, respectively.
Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities. Capping agents are used for exhibiting a better antibacterial activity than uncapped Ag NPs. There are very few reports that have shown the usage of AgNPs for in-vivo antibacterial therapy. Citrate-capped silver nanoparticles were synthesized chemically by citrate reduction method; the size of Cit-AgNPs was determined by an atomic force microscope (AFM) and was between 15-90 nm. Acinetobacter baumannii (A. baumannii) isolates were the only sensitive species to Cit-AgNPs. MICs and MBC of Cit-AgNPs were determined by using A. baumannii. The results showed an additive effect of Cit-AgNPs. Four mice groups were infected with
... Show MoreMetal and metal oxide NPs have shown to be perfectly synthesized by using plant extracts with high efficiency, low cost and low toxicity. Our goal was to synthesize ZnO NPs by using an extract of pomegranate seeds and investigate the anticorrosion, antimicrobial and antioxidant properties of the synthesized ZnO NPs. The results have shown that the use of pomegranate in the green synthesis of ZnO NPs gave a good yield, with a low cost and non-toxic approach. The electrophoretic deposition (EPD) was used to coat stainless steel (S.S) by synthesized ZnO NPs in an alcoholic solution at room temperature producing a good coating against corrosion. The corrosion properties were investigated in a saline solution and a temperature range of (293–32
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreObjective: Using green chemistry, an effective, inexpensive, and environmentally safe method, sulfur nanoparticles with specific properties can be prepared and used in nanotechnology. This research aimed to prepare sulfur nanoparticles from chilli pepper extract and determine their effectiveness against colon cancer. Method: Chilli pepper extract obtained from local markets was treated with aqueous sodium thiosulfate (Na2S2O7.5H2O). After mixing, it was continuously stirred, heated, and filtered. NaBH4 was then added, resulting in a yellow precipitate. The precipitate was centrifuged, purified, and dried at 250°C. Results: Standardised tests such as UV-Vis, XRD, SEM, TEM, AFM, and EDX were used, resulting in sulfur nanoparticles with an av
... Show MoreGreen synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreAbstract Objectives: This research seeks to highlight one of the important topics artificial intelligence and its impact on education and media. This issue has received considerable attention from international institutions and organizations in order to keep pace with the world's current progress. The study provided an overview of the concept of artificial intelligence, its definitions, its importance and characteristics and its impact on education in general and on the student and teacher in particular, as well as linking the subject of education to the media because social media that is one of the media has a great impact on the academic community. Methods: This study relied on the analytical descriptive curriculum where one of the curr
... Show MoreUtilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface
... Show MoreOne hundred and eighty five urine samples were collected eight isolates (4.3%) were obtained and diagnosed as Staphylococcus aureus. Among 8 isolates, 5 (62.5%) S. aureus isolates were found to be enterotoxigenic, most of isolates produced at least two types of Staphylococcal enterotoxins (SEs). The production of enterotoxins in the presence or absence of Thymol extracts (aqueous and alcoholic) were estimated using a reversed passive latex agglutination (SET-RPLA) kit. The extracts reduced enterotoxin production compared with the control. Enterotoxin inhibition was observed for enterotoxin C production at minimal inhibitory concentrations (MIC) at 400 µg/ml, whereas production of enterotoxins A, B, and
... Show More