Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy(EDX), the physico-chemical characterization of Y2O3NPs was examined. The primary characteristic peak of YOY at 565 cm-1, which indicates the synthesis of nanoparticles, is seen in the FT-IR spectra. The XRD pattern showed that a single phase cubic structure of YONPs with an Ia-3 space group had formed. SEM was used to examine the surface morphology. The composition of Yttrium and oxygen in Y2O3NPs was determined to be 78.74% and 21.26%, respectively, according to the EDX results. The anticorrosive behavior was tested by polarization curve in 18.204% CaCl2 solution at five temperatures in the range 293- 313 K. Various concentrations 0.15 0.26 and 0.37 of N Y2O3NPs coating on the carbon steel surface were applied using the electrophoresis deposition method. The obtained results indicated that Y2O3NPs formed a protective film acts as a physical barrier for the protection of steel alloy. Additionally, corrosion protection efficiency values of 0.26 N Y2O3NPs coating were superior to that of 0.15 and 0.37 N Y2O3NPs coating, respectively.
In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MoreThis paper experimentally investigated the dynamic buckling behavior of AISI 303 stainless steel aluminized and as received intermediate columns. Twenty seven specimens without aluminizing (type 1) and 75 specimens with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), were tested under dynamic compression loading (compression and torsion), dynamic bending loading (bending and torsion), and under dynamic combined loading (compression, bending, and torsion) by using a rotating buckling test machine. The experimental results werecompared with tangent modulus theory, reduced modulus theory, and Perry Robertson interaction formula. Reduced modulus was formulated to circular cross-
... Show MoreBackground: The demand for esthetic orthodontic appliances is increasing; so the esthetic orthodontic archwires were introduced. Among them, Teflon and Epoxy coated stainless steel archwires. The amount of force available from the archwire depends on the structural properties and susceptibility to corrosion. All metallic alloys are changed during immersion in artificial saliva, chlorhexidine mouthwash andtoothpaste, but their behaviors differ from one type to another. They corrode at different rates, which lead to decrease the amount of force applied to the teeth. This in vitro study was designed to evaluate the corrosion pits in stainless steel archwires coated with Teflon and with Epoxy in dry and after immersion in artificial saliva, chl
... Show MoreThis study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.
After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o
... Show MoreVerrucae vulgares are commonly encountered. The present work is designed in an attempt to build a systematic procedure for treating warts by carbon dioxide laser regarding dose parameters, application parameters and laser safety.
Patients and Methods: The study done in the department of dermatology in Al-Najaf Teaching Hospital in Najaf, Iraq. Forty-two patients completed the study and follow up period for 3 months. Recalcitrant and extensive warts were selected to enter the study. Carbon dioxide laser in a continuous mode, in non-contact application, with 1 mm spot size was used. The patients were divided into two groups. The first group of patients consisted of 60 lesions divided to 6 equal groups, in whom we use different outputs a
Background. Nanocoating of biomedical materials may be considered the most essential developing field recently, primarily directed at improving their tribological behaviors that enhance their performance and durability. In orthodontics, as in many medical fields, friction reduction (by nanocoatings) among different orthodontic components is considered a substantial milestone in the development of biomedical technology that reduces orthodontic treatment time. The objective of the current research was to explore the tribological behavior, namely, friction of nanocoated thin layer by tantalum (Ta), niobium (Nb), and vanadium (V) manufactured using plasma sputtering at 1, 2, and 3 hours on substrates made of 316L stainless steel (SS),
... Show MoreIn this work, new Schiff bases of quinazolinone derivatives (Q1-Q5) were synthesized from methyl anthranilate. The synthesis involved three steps. In the first step, methyl anthranilate was reacted with isothiocyanatobenzene, producing the thiourea derivative K1. The second step entailed reacting K1 with hydrazine hydrate, synthesizing 3-amino-2-(phenylamino) quinazolin-4(3H)-one (K2). The third step involved reaction of K2 with various aromatic aldehydes, yielding the Schiff bases derivatives Q1-Q5. The chemical structures of these compounds were identified by FT-IR,1H NMR and 13C NMR spectroscopy. The newly synthesized derivatives (Q1-Q5) were subjected to rigorous evaluation to assess their efficacy as corrosion inhibitors for ca
... Show MoreThe city of Jalawla is the administrative center of Jalawla district. It is located in the district of Khanaqin with a population of 62117 inhabitants in 2018. The city of Jalawla suffers from an imbalance in the geographical distribution of educational services among the residential neighborhoods. There are only two schools in the camp district According to the city's population, if the city of Jalawla needs eleven kindergartens and needs one primary school, eight middle schools, two preparatory schools, three secondary schools and two vocational schools. Despite the low share of the teacher or teacher for the number of students (25) students Enrollment in schools for the school of high school athletes and school students. Which determi
... Show MoreIn this work the corrosion behavior of Ti-6Al-4V alloy was studied by using galvanostatic measurements at room temperature in different media which includ sodium chloride (food salt), sodium tartrate (presence in jellies, margarine, and sausage casings,etc.), sodium oxalate (presence in fruits, vegetables,etc.), acetic acid (presence in vinegar), phosphoric acid (presence in drink), sodium carbonate (presence in 7up drink,etc.), and sodium hydroxide in order to compare.
Corrosion parameters were interpreted in th
... Show MoreThis study assessed the effect of co-substitution of strontium (Sr) and magnesium (Mg) ions into the hydroxyapatite (HA) coating which was deposited on Ti–6Al–4V dental alloys by an electrochemical deposition process. The deposited layers were examined using energy-dispersive X-ray spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, atomic force microscopy and X-ray diffraction. The corrosion behavior of Ti–6Al–4V alloys in an artificial saliva environment was studied through potentiodynamic polarization technique and electrochemical impedance spectroscopy. The results indicated that the substituted Sr and Mg ions in HA improved the HA coating, where the protection efficiency percentage (PE%) for Ti
... Show More