Dapagliflozin is a novel sodium-glucose cotransporter type 2 inhibitor. This work aims to develop a new
validated sensitive RP-HPLC coupled with a mass detector method for the determination of dapagliflozin, its
alpha isomer, and starting material in the presence of dapagliflozin major degradation products and an internal
standard (empagliflozin). The separation was achieved on BDS Hypersil column (length of 250mm, internal
diameter of 4.6 mm and 5-μm particle size) at a temperature of 35℃. Water and acetonitrile were used as
mobile phase A and B by gradient mode at a flow rate of 1 mL/min. A wavelength of 224nm was selected to
perform detection using a photo diode array detector. The method met the requirement of the International
Conference on Harmonisation for Registration of Pharmaceuticals for Human Use (ICH) for validation. The
molecular weight of impurities and degradation products was estimated using positive ESI-MS. Fifteen
impurities were detected during the analysis of dapagliflozin APIs and the brand Farxiga ® and some generic
products. Three of fifteen detected impurities (H, J and K) exceeded the impurities acceptable limits 0.1%.
Those impurities were isolated using new preparative chromatography then characterized using elemental
analysis, FTIR and NMR.
In recent years, social media has been increasing widely and obviously as a media for users expressing their emotions and feelings through thousands of posts and comments related to tourism companies. As a consequence, it became difficult for tourists to read all the comments to determine whether these opinions are positive or negative to assess the success of a tourism company. In this paper, a modest model is proposed to assess e-tourism companies using Iraqi dialect reviews collected from Facebook. The reviews are analyzed using text mining techniques for sentiment classification. The generated sentiment words are classified into positive, negative and neutral comments by utilizing Rough Set Theory, Naïve Bayes and K-Nearest Neighbor
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreImage is an important digital information that used in many internet of things (IoT) applications such as transport, healthcare, agriculture, military, vehicles and wildlife. etc. Also, any image has very important characteristic such as large size, strong correlation and huge redundancy, therefore, encrypting it by using single key Advanced Encryption Standard (AES) through IoT communication technologies makes it vulnerable to many threats, thus, the pixels that have the same values will be encrypted to another pixels that have same values when they use the same key. The contribution of this work is to increase the security of transferred image. This paper proposed multiple key AES algorithm (MECCAES) to improve the security of the tran
... Show MoreThe aim of this research is controlling the amount of the robotic hand catching force using the artificial muscle wire as an actuator to achieve the desired response of the robotic hand in order to catch different things without destroying or dropping them; where the process is to be similar to that of human hand catching way. The proper selection of the amount of the catching force is achieved through out simulation using the fuzzy control technique. The mechanism of the arrangement of the muscle wires is proposed to achieve good force selections. The results indicate the feasibility of using this proposed technique which mimics human reasoning where as the weight of the caught peace increases, the force increases also with approximatel
... Show MoreAutism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreThe statistical distributions study aimed to obtain on best descriptions of variable sets phenomena, which each of them got one behavior of that distributions . The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods like greatest ability, minimum squares method and Mixing method (suggested method).
The research
... Show MoreGross domestic product (GDP) is an important measure of the size of the economy's production. Economists use this term to determine the extent of decline and growth in the economies of countries. It is also used to determine the order of countries and compare them to each other. The research aims at describing and analyzing the GDP during the period from 1980 to 2015 and for the public and private sectors and then forecasting GDP in subsequent years until 2025. To achieve this goal, two methods were used: linear and nonlinear regression. The second method in the time series analysis of the Box-Jenkins models and the using of statistical package (Minitab17), (GRETLW32)) to extract the results, and then comparing the two methods, T
... Show MoreThe present work aims to investigate approaches, measures and detection of indoor radon level in buildings of the department of physics in college of science of Baghdad University. CR-39 solid state nuclear track detectors were used to measure the radon concentrations inside the rooms, including five laboratories and five workplace rooms in ground and first storey of the department. The average radon concentration at first storey was found to be 43.1±13.2 Bq/m3 and 40.1±13.4 Bq/m3 at the ground storey. The highest level of radon concentration at the first storey in the radioactive sources store was 87.5±29 Bq/m3 while at the ground storey in room(2) was 70.2±24 Bq/m3 which is due to the existence radioactive sources in some selected
... Show More