Endothelin-1 (ET-1) is a potent vasoconstrictor hormone that has been identified as an important factor
responsible for the development of cardiovascular dysfunctions. ET-1 exerts its vasoconstrictor activity
through two pharmacologically distinct receptors, ETA and ETB that are found in vascular smooth muscle
cells (VSMCs) and the vasodilator activity through an ETB receptor located on endothelial cells. This study
aimed to show the impact of 1µM L-arginine (LA), 100µM tetrahydrobiopterin (BH4), and their combined
effect on ET-1 activity in both lead-treated and lead-untreated rat aortic rings. This means, investigating how
endothelial dysfunction reverses the role of nitric oxide precursor and cofactor. In this study, Rat aortic rings
have been pre-incubated with BH4, LA and their combination. Subsequently, the aortic rings were preincubated with 200µM N-Nitro-L-arginine methyl ester (L-NAME) and 0.5µM BQ-123. Then, the vascular
response to cumulative doses of rat ET-1 was analyzed in each of the above-mentioned groups (LA, BH4, LA
& BH4, L-NAME, BQ-123), in the presence and absence of lead acetate 1µM Pb (C2H3O2)2. ET-1 efficacy and
potency were significantly decreased in the presence of LA, BH4, and LA and BH4 combination in the untreated
group, while it significantly increased in the presence of lead. In the second trial of experiments ET-1 efficacy
markedly decreased in BQ-123- incubated cells in both lead-treated and untreated aortic rings. In the presence
of lead, the efficacy of ET-1 was raised with the use of L-NAME. In conclusion, LA and BH4 can be considered
pharmacological agents to alter the potency of ET-1-induced vasoconstriction and concomitantly lower blood
pressure.
In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MoreBackground The traditional management of appendicular mass is an initial conservative treatment followed by interval appendectomy. Recently interval appendicectomy has been questioned.
Objective: The purpose of this study was to clarify the need and the role of interval appendicectomy after successful initial conservative treatment.
Method: This is a prospective study conducted in a major hospital in Basra from April 2006 to Septemper2010, included 65 patients with appendicular mass which subsequently proved postinflammmatory (phlegmonous) changes of the appendix were treated conservatively.
Results: Routine interval appendicectomy was not performed and needed after successful treatment in the majority of the patients (84.6%). F
This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreIn this work, the switching nonlinear dynamics of a Fabry-Perot etalon are studied. The method used to complete the solution of the differential equations for the nonlinear medium. The Debye relaxation equations solved numerically to predict the behavior of the cavity for modulated input power. The response of the cavity filled with materials of different response time is depicted. For a material with a response time equal to = 50 ns, the cavity switches after about (100 ns). Notice that there is always a finite time delay before the cavity switches. The switch up time is much longer than the cavity build-up time of the corresponding linear cavity which was found to be of the order of a few round-trip ti
... Show MoreIn this work, an experimental study has been done to expect the heat characteristics and performance of the forced-convection from a heated horizontal rectangular fins array to air inside a rectangular cross-section duct. Three several configurations of rectangular fins array have been employed. One configuration without notches and perforations (solid) and two configurations with combination of rectangular-notches and circular-perforations for two various area removal percentages from fins namely 18% notches-9% perforations and 9% notches-18% perforations are utilized. The rectangular fins dimensions and fins number are kept constant. The fins array is heated electrically from the base
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreThe main objective of this paper is to study the behavior of Non-Prismatic Reinforced Concrete (NPRC) beams with and without rectangular openings either when exposed to fire or not. The experimental program involves casting and testing 9 NPRC beams divided into 3 main groups. These groups were categorized according to heating temperature (ambient temperature, 400°C, and 700°C), with each group containing 3 NPRC beams (solid beams and beams with 6 and 8 trapezoidal openings). For beams with similar geometry, increasing the burning temperature results in their deterioration as reflected in their increasing mid-span deflection throughout the fire exposure period and their residual deflection after cooling. Meanwhile, the existing ope
... Show MoreGeologic modeling is the art of constructing a structural and stratigraphic model of a reservoir from analyses and interpretations of seismic data, log data, core data, etc. [1].
A static reservoir model typically involves four main stages, these stages are Structural modeling, Stratigraphic modeling, Lithological modeling and Petrophysical modeling [2].
Ismail field is exploration structure, located in the north Iraq, about 55 km north-west of Kirkuk city, to the north-west of the Bai Hassan field, the distance between the Bai Hassan field and Ismael field is about one kilometer [3].
Tertiary period reservoir sequences (Main Limestone), which comprise many economica
... Show MoreThis study investigates the improvement of Iraqi atmospheric gas oil characteristics which contains 1.402 wt. % sulfur content and 16.88 wt. % aromatic content supplied from Al-Dura Refinery by using hydrodesulfurization (HDS) process using Ti-Ni-Mo/γ-Al2O3 prepared catalyst in order to achieve low sulfur and aromatic saturation gas oil. Hydrodearomatization (HDA) occurs simultaneously with hydrodesulfurization (HDS) process. The effect of titanium on the conventional catalyst Ni-Mo/γ-Al2O3 was investigated by physical adsorption and catalytic activity test. Ti-Ni-Mo/γ-Al2O3 catalyst was prepared under vacuum impregnation condition to ensure efficient precipitation of metals within the carrier γ-Al2O3. The loading percentage of met
... Show More