One technique used to prepare nanoparticles material is Pulsed Laser Ablation in Liquid (PLAL), Silver Oxide nanoparticles (AgO) were prepared by using this technique, where silver target was submerged in ultra-pure water (UPW) at room temperature after that Nd:Yag laser which characteristics by 1064 nm wavelength, Q-switched, and 6ns pulse duration was used to irradiated silver target. This preparation method was used to study the effects of laser irradiation on Nanoparticles synthesized by used varying laser pulse energy 1000 mJ, 500 mJ, and 100 mJ, with 500 pulses each time on the particle size. Nanoparticles are characterized using XRD, SEM, AFM, and UV-Visible spectroscopy. All the structural peaks determined by the XRD test can be indexed as face-centered cubic (FCC) type, the stronger crystalline orientation is located in the (111) plane. The nanoscale particles have an almost spherical shape as inferred from the SEM images. In (1000) mJ laser pulse energy the best smallest particle size was produced. According to AFM results of all films, the particle size 32.45nm, 64.3nm, and 67.86nm respectively for 1000 mJ, 500 mJ, and 100 mJ , the surface roughness affected and increased as increase the laser energy because the increase particle size and aggregation of partials. UV-Visible spectroscopy measured the absorbance of the silver nanoparticle prepared which is increased as increase pulsed laser ablation energy at wavelength 440 nm.
Azo dye ligand was produced by coupling the diazonium salt of 4aminoantipyrine with 2, 4-dimethylphenol. The structure of 1 azo compound was someone by elemental analyses, HNMR, FT-IR and UV-Vis spectroscopic mechanics. Metal complexes of nickel (II) and copper (II) have been performed and depicted. The formation of complexes has been identified by using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectral process as well as, conductivity and magnetic properties quantifications. The nature of the complexes formed were studied succeed the mole ratio and continuous variation methods, Beer's law followed over a concentration 4 4 scope (1×10- - 3×10- M). High molar absorbtivity of the complex solutions were observed. Analytica
... Show Moreحضر الليكاند (L) 1-فنيل-3-بردين-2-يل مثيل-ثايويوريا من تفاعل 2-أمينو مثيل بردين مع فنيل ايزوثايوسيانيت وبنسبة 1: 1 وشخص الليكاند بواسطة التحليل الدقيق للعناصر (C, H, N), الأشعة تحت الحمراء، الأشعة فوق البنفسجية–المرئية وطيف الرنين النووي المغناطيسي كما حضرت وشخصت معقدات أملاح بعض ايونات العناصر الثنائية التكافؤ (Co, Ni, Cu, Cd and Hg). استخدمت تقنية الأشعة تحت الحمراء، الأشعه فوق البنفسجية-المرئية, التوصيلية الكهربائية و الا
... Show MoreThe aim of this work is synthesis of _Eoly (Vinyl-4-AminoBenzoate) (PVAB) from reaction of _Eoly Vinyl Alkohol PVA with 4-aminobenzoyl chloride in alkaline media. We also prepare the metal complexes of poly (vinyl- 4-aminobenzoate) and antimicrobial properties were evaluated by dilute method against five pathogenic bacteria (Escherichia coli, Shigella dysentery, Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed different activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer.
New Schiff-base ligands bearing tetrazole moiety and their polymeric metal complexes with Co(II), Ni(II) and Cd(II) ions are reported. Ligands were prepared in a multiple-step reaction. The reaction of sodium 2,6- diformylphenolate and cyclohexane-1,3-dione with 5-amino-2-fluorobenzonitrile resulted in the isolation of two precursors sodium 2,6-bis((E)-(3-cyano-4-fluorophenylimino)methyl)-4-methylphenolate 1 and 5,5'- (1E,1'E)-cyclohexane-1,3-diylidenebis- (azan-1-yl-1-ylidene)bis(2-fluorobenzonitrile) 2, respectively. The reaction of precursors with azide gave the required ligands; sodium 2,6-bis((E)-(4-fluoro-3-(1H-tetrazol-5- yl)phenylimino)methyl)-4-methylphenolate (NaL) and (N, N'E, N, N'E)-N, N'-(cyclohexane-1,3-diylidene)bis(4- fluor
... Show MoreFour metal complexes mixed ligand of 2-aminophenol (2-AP) and tributylphosphine (PBu3) were produced in aqueous ethanol with (1:2:2) (M:2-AP:PBu3). The prepared complexes were identified by using flame atomic absorption, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. In addition antibacterial activity of the two ligands and mixed ligand complexes oboist three species of bacteria were also examined. The ligands and their complexes show good bacterial activities. From the obtained data the octahedral geometry was suggested for all prepared complexes.
Complexes of some metal ions ( Mn(I? ) , Co(??) , Ni(??) ,Cu (??) , Zn(I?) , Cd (??) , and Hg(??) ) with 8-hydroxyquinoline (Oxine) and 2- Picoline (2-pic ) have been synthesized and characterized on the basis of their FT-IR. and Uv-visible spectroscopy ,atomic absorption molar conductivity measurements and magnetic susceptibility ,from the results obtained the following general formula has been given for prepared complexes [M (oxine)2 (2-pic)2]where M = M(??) = Mn , Co , Ni , Cu , Zn , Cd , Hg(oxine)- = ionic ligand 8-hydroxyquinolin (oxinato)(2- pic) = 2- picoline