Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural Network (Text-CNN) and Long Short-Term Memory (LSTM) architecture to produce efficient hybrid model. Text-CNN is used to identify the relevant features, whereas the LSTM is applied to deal with the long-term dependency of sequence. The results showed that when trained individually, the proposed model outperformed both the Text-CNN and the LSTM. Accuracy was used as a measure of model quality, whereby the accuracy of the Hybrid Deep Neural Network is (0.914), while the accuracy of both Text-CNN and LSTM is (0.859) and (0.878), respectively. Moreover, the results of our proposed model are better compared to previous work that used the same dataset (AraNews dataset).
The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreIn this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
The spectral response of the Si solar cell does not coincidence with the sun irradiance spectrum, so the efficiency of the Si solar cell is not high. To improve the Si solar cell one try to make use of most region of the sun spectrum by using dyes which absorb un useful wavelengths and radiate at useful region of spectrum (by stock shift). Fluorescence's dye is used as luminescent concentrator to increase the efficiency of the solar cell. The results show that the performance efficiency and out power for crystalline silicon solar cells are improved.
Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN
... Show MoreIn this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed a
... Show MoreCarbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreThe total and individual multipole moments of magnetic electron scattering form factors in 41Ca have been investigated using a widely successful model which is the nuclear shell model configurations keeping in mind of 1f7/2 subshell as an L-S shell and Millinar, Baymann, Zamick as L-S shell (F7MBZ) to give the model space wave vector. Also, harmonic oscillator wave functions have been used as wave function of a single particle in 1f7/2 shell. Nucleus 40Ca as core closed and Core polarization effects have been used as a corrective with first order correction concept to basic computation of L-S shell and the excitement energy has been implemented with 2ћω. The
... Show MoreCivil environment in nursing education enhances achieving learning outcomes. Addressing incivility can be crucial to improve academic achievements. The purpose of this study was examining the psychometric properties of the Arabic version of the Incivility in Nursing Education-Revised scale regarding nursing faculty.
This cross-sectional study conducted in five Arab countries using a convenience sampling st
These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the proce
... Show More