A series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these synthesized compounds were tested insilico selectivity toward COX-1 and COX-2 and in vitro for their anti-inflammatory efficacy . In vitro testing demonstrated that all of the produced compounds had significantly stronger activity against the COX-2 enzyme than COX-1. Among these, compound 1 displayed the most potent inhibitory activity with an IC50 value of 0.19 µM compared to standard drug celecoxib (IC50 = 0.29 µM). The most active derivative compound1 was oriented towards the active site and occupied the target enzyme based on the docking investigation against COX-1 and COX-2. In addition, insilico investigations found that COX-2 has a higher inhibitory activity than COX-1
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreCoblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
Coupling reaction of 4-amino antipyrene with 2,6-dimethyl phenol gave bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, 1HNMR, FT-IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII, ZnII, CdII, and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UVVis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the complexes formed were studied followin
... Show MoreNano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreCoblatcomplex has been prepared by reaction between C16H19N3O3S (L) as ligand and metal salt (II). The prepared complex were characterized by infrared spectra, electromic spectra, magnetic susceptibility, molar conductivity measurement and metal analysis by atomic absorption and (C.H.N) analysis. From these studies tetrahedral geometry structure for the complex was suggested. The photodegredation of complex were study using photoreaction cell and preparednanoTiO2 catalyst in different conditions (concentration, temperatures, pH).The results show that the recation is of a first order with activation energy equal to (6.6512 kJ /mol).
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreA new novel series of metalcomplexes are prepared from reactions between 2-benzoylthio- benzimidazole (L) with metal salts of Co (II) , Fe(III) and Rh (III) , while Pd(II) complex was obtained by mixing ligandsof 2-benzoylthiobenzimidazole (L) as primary ligand and bipyridine (L/)as secondary ligand as well as palladium chloride as metal salt in an ethanoic medium. The geometry of these compounds were identified using C.H.N.microanalysis, Ultraviolet–visible, Fourier transforms infrared, magnetic susceptibility, molar conductivity and flame atomic absorption (A.A). From the dataobtained by these spectral analyses, the molecular structures for Rh and Fe complexes were proposed to be octahedral geometry. A square planar const
... Show MoreThis study describes preparation a new series of tetra-dentate N2O2 dinuclear complexes Cr(III), Co(II)and Cu(II) of the Schiff base 2-[5-(2-hydroxy-phenyl)-1,3,4-thiadiazol-2-ylimino]-methyl-naphthalen-1-ol], (LH2) derived from 1-hydroxy-naphthalene-2-carbaldehyde with 2-amino-5-(2-hydroxy-phenyl)-1,3,4-thiadiazole. These ligands were characterized by FT-IR, UV-Vis, Mass spectra, elemental analysis, and 1H-NMR. All prepared complexes have been characterized by conductance measurement, magnetic susceptibility, electronic spectra, infrared spectrum, thermal Analysis (TGA), and metal analysis by atomic absorption. The stoichiometry of metal to ligand, magnetic susceptibility, and electronic spectra measurements show an octahedral geom
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that
... Show More