Using sodium4-((4,5-diphenyl-imidazol-2-yl)diazenyl)-3-hydroxynaphthalene-1-sulfonate (SDPIHN) as a chromogenic reagent in presence of non-ionic surfactant (Triton x-100) to estimate the chromium(III) ion if the wavelength of this reagent 463 nm to form a dark greenish-brown complex in wavelength 586 nm at pH=10,the complex was stable for longer than 24 hours. Beer's low, molar absorptivity 0.244×104L.mol-1.cm-1, and Sandal's sensitivity 0.021 µg/cm2 are all observed in the concentration range 1-11 µg/mL. The limits of detection (LOD) and limit of quantification (LOQ), respectively, were 0.117 µg/mL and 0.385µg/mL. (mole ratio technique, job's method) were employed to investigate the stoichiometry of complexes, and both methods revealed that the metal to reagent ratio is equal 1:3.The absorption impact value of the reagent concentration, surfactant concentration, pH, reaction duration, temperature, addition sequences, ionic strength, masking agent, and the influence of many parameters such as affect cations and anions, among others. The influence of temperature on the reaction, which was referred to as an exothermic reaction, was also taken into account while calculating thermodynamic functions. Researchers investigated some of the complex solid's physical properties, such as solubility, molar conductivity, and melting point, as part of its development. UV-visible rays were used to investigate the chromium complex, while Relative Standard Deviation (RSD%) and Relative Error (E %) were used to assess the precision and accuracy of the novel method.
Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreThis article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
Autoría: Muwafaq Obayes Khudhair. Localización: Revista iberoamericana de psicología del ejercicio y el deporte. Nº. 6, 2022. Artículo de Revista en Dialnet.
HTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
Multi-carrier direct sequence code division multiple access (MC-DS-CDMA) has emerged recently as a promising candidate for the next generation broadband mobile networks. Multipath fading channels have a severe effect on the performance of wireless communication systems even those systems that exhibit efficient bandwidth, like orthogonal frequency division multiplexing (OFDM) and MC-DS-CDMA; there is always a need for developments in the realisation of these systems as well as efficient channel estimation and equalisation methods to enable these systems to reach their maximum performance. A novel MC-DS-CDMA transceiver based on the Radon-based OFDM, which was recently proposed as a new technique in the realisation of OFDM systems, will be us
... Show More'Steganography is the science of hiding information in the cover media', a force in the context of information sec, IJSR, Call for Papers, Online Journal
Tanuma and Zubair formations are known as the most problematic intervals in Zubair Oilfield, and they cause wellbore instability due to possible shale-fluid interaction. It causes a vast loss of time dealing with various downhole problems (e.g., stuck pipe) which leads to an increase in overall well cost for the consequences (e.g., fishing and sidetrack). This paper aims to test shale samples with various laboratory tests for shale evaluation and drilling muds development. Shale's physical properties are described by using a stereomicroscope and the structures are observed with Scanning Electron Microscope. The shale reactivity and behavior are analyzed by using the cation exchange capacity testing and the capillary suction test is
... Show More