A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Augmented reality technology is a modern technique used in all fields, including: medicine, engineering and education, and has received attention from officials in the educational process at present; The focus of this research is on the degree of use of augmented reality among field experience students in the project's optimal investment program for teaching staff and their difficulties, applied to a sample of 75 students, through a questionnaire prepared by the researcher as a tool to determine the degree of use, as well as difficulties. The researcher addressed the subject through two main axes to determine the degree of use, as well as the difficulties preventing teachers and learners from using this technique. The results of the rese
... Show MoreThe increasing complexity of how humans interact with and process information has demonstrated significant advancements in Natural Language Processing (NLP), transitioning from task-specific architectures to generalized frameworks applicable across multiple tasks. Despite their success, challenges persist in specialized domains such as translation, where instruction tuning may prioritize fluency over accuracy. Against this backdrop, the present study conducts a comparative evaluation of ChatGPT-Plus and DeepSeek (R1) on a high-fidelity bilingual retrieval-and-translation task. A single standardize prompt directs each model to access the Arabic-language news section of the College of Medicine, University of Baghdad, retrieve the three most r
... Show MoreThe aim of the research is to reveal the reality of teacher performance evaluation in the Sultanate of Oman in light of some global models. The study followed a qualitative descriptive research design. Seven forms of teacher formative and summative assessments were analyzed. Besides, an analytical template was developed, consisting of six areas related to the teaching performance of teachers. These included: lesson planning and preparation, learning environment, education, professional development, student academic, and community and parental partnership. The study reached a number of results; the most notable is the lack of change of forms for more than a decade despite the rapid development of the educational system in the sultanate in
... Show MoreObjective(s): To determine the impact of psychological distress in women upon coping with breast cancer.
Methodology: A descriptive design is carried throughout the present study. Convenient sample of (60) woman with breast cancer is recruited from the community. Two instruments, psychological distress scale and coping scale are developed for the study. Internal consistency reliability and content validity are obtained for the study instruments. Data are collect through the application of the study instruments. Data are analyzed through the use of descriptive statistical data analysis approach and inferential statistical data analysis approach.
Results: The study findings depict that women with breast cancer have experien
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreEx-situ bioremediation of 2,4-D herbicide-contaminated soil was studied using a slurry bioreactor operate at aerobic conditions. The performance of the slurry bioreactor was tested for three types of soil (sand, sandy loam and clay) contaminated with different concentration of 2,4-D, 200,300and500mg/kg soil. Sewage sludge was used as an inexpensive source of microorganisms which is available in large quantities in wastewater treatment plants. The results show that all biodegradation experiments demonstrated a significant decreases in 2,4-D concentration in the tested soils. The degradation efficiency in the slurry bioreactor decreases as the initial concentration of 2,4-D in the soils increases.A 100 % removal was achieved at initial con
... Show MoreIn many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte
... Show MoreThis research presents an experimental investigation of the rehabilitation efficiency of the damaged hybrid reinforced concrete beams with openings in the shear region. The study investigates the difference in retrofitting ability of hybrid beams compared to traditional beams and the effect of two openings compared with one opening equalized to two holes in the area. Five RC beams classified into two groups, A and B, were primarily tested to full-failure under two-point loads. The first group (A) contained beams with normal weight concrete. The second group (hybrid) included beams with lightweight concrete for web and bottom flange, whereas the top flange was made from normal concrete. Two types of openings were considered in this s
... Show More