A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
In this investigative endeavor, a novel concrete variety incorporating sulfur-2,4-dinitrophenylhydrazine modification was developed, and its diverse attributes were explored. This innovative concrete was produced using sulfur-2,4-dinitrophenylhydrazine modification and an array of components. The newly created sulfur-2,4-dinitrophenylhydrazine modifier was synthesized. The surface texture resulting from this modifier was examined using SEM and EDS techniques. The component ratios within concrete, chemical and physical traits derived from the sulfur-2,4-dinitrophenylhydrazine modifier, chemical and corrosion resistance of concrete, concrete stability against water absorption, concrete resilience against freezing, physical and mechanical p
... Show MoreForeign direct investment has seen increasing interest worldwide, especially in developing economies. However, statistics have shown that Yemen received fluctuating FDI inflows during the period under study. Against this background, this research seeks to determine the relationship and impact of interest rates on FDI flows. The study also found other determinants that greatly affected FDI inflows in Yemen for the period 1990-2018. Study data collected from the World Bank and International Monetary Fund databases. It also ensured that the time series were made balanced and interconnected, and then the Auto Regressive Distributed Lag method used in the analysis. The results showed that the interest rates and
... Show MoreBackground: The combination of thermoplastic nylon resin materials and auto polymerizing resin is necessary in some situation for repair and adjustment. This study evaluated shear bond strength between thermoplastic nylon material (flexible) and auto polymerizing acrylic resin subjected to holes and silica coated layer. Materials and Method: Forty five (45) specimens were prepared from flexible acrylic bonded to auto-polymerizing acrylic resin and divided into three groups according to the surface treatments as follows: Group A: 15 specimens of flexible acrylic bonded with cold-cure acrylic by holes. Group B: 15 specimens of flexible acrylic bonded with cold-cure acrylic by silica coated layer. Group C: 15 specimens of flexible acrylic bon
... Show MoreThe CuInSe2 (CIS) nanocrystals are synthesized by arrested precipitation from molecular precursors are added to a hot solvent with organic cap- ping ligands to control nanocrystal formation and growth. CIS thin films deposited onto glass substrate by spray - coating, then selenized in Ar- atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as -deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illumination. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CIS have the chalcopyrite structure as the major phase with a preferred orientation along (112) direction and the atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2
Experimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
In this study, we investigate the behavior of the estimated spectral density function of stationary time series in the case of missing values, which are generated by the second order Autoregressive (AR (2)) model, when the error term for the AR(2) model has many of continuous distributions. The Classical and Lomb periodograms used to study the behavior of the estimated spectral density function by using the simulation.
With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MoreBackground: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of
... Show More