A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreThis paper demonstrates the design of an algorithm to represent the design stages of fixturing system that serve in increasing the flexibility and automation of fixturing system planning for uniform polyhedral part. This system requires building a manufacturing feature recognition algorithm to present or describe inputs such as (configuration of workpiece) and built database system to represents (production plan and fixturing system exiting) to this algorithm. Also knowledge – base system was building or developed to find the best fixturing analysis (workpiece setup, constraints of workpiece and arrangement the contact on this workpiece) to workpiece.
Abstract
Bivariate time series modeling and forecasting have become a promising field of applied studies in recent times. For this purpose, the Linear Autoregressive Moving Average with exogenous variable ARMAX model is the most widely used technique over the past few years in modeling and forecasting this type of data. The most important assumptions of this model are linearity and homogenous for random error variance of the appropriate model. In practice, these two assumptions are often violated, so the Generalized Autoregressive Conditional Heteroscedasticity (ARCH) and (GARCH) with exogenous varia
... Show MoreA mathematical model is developed which predicates the performance of cylindrical ion exchange bed involving comparing of axial dispersion model for cation exchange column with different assumption, this model permits the performance to predicate the residence time within the bed with the variance, axial dispersion and Pecklet No. to indicated deviation from plug flow model.
Two type of systems are chosen for positive ions first with divalent ions (Ca+2) to exchange with resin of Na+1form used as application in water softener units and second with monovalent ions (Na+1) to exchange with resin of H+1 form used as application in deionize water units &n
... Show MoreThe Jeribe Formation, the Jambour oil field, is the major carbonate reservoir from the tertiary reservoirs of the Jambour field in northern Iraq, including faults. Engineers have difficulty organizing carbonate reserves since they are commonly tight and heterogeneous. This research presents a geological model of the Jeribe reservoir based on its facies and reservoir characterization data (Permeability, Porosity, Water Saturation, and Net to Gross). This research studied four wells. The geological model was constructed with the Petrel 2020.3 software. The structural maps were developed using a structural contour map of the top of the Jeribe Formation. A pillar grid model with horizons and layering was designed for each zone. Followin
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show MoreThe provision of openings in serviceable reinforced concrete beams may result in a substantial decline in the beam's capacity and integrity, indicating the necessity of opening strengthening. The present study investigates the experimental response of reinforced concrete T-beams with multiple web-strengthened openings disposed in shear span to static and impact loads. Fourteen RC T-beams were tested in two groups, each of seven beams. The first group was tested under static loading up to failure, while the second group was tested under repeated impact loading until the width of shear cracks reached 0.3 mm. The residual static strengths of the beams subjected to impact loading were then determined. The test variables considered were
... Show More