A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Abstract—The upper limb amputation exerts a significant burden on the amputee, limiting their ability to perform everyday activities, and degrading their quality of life. Amputee patients’ quality of life can be improved if they have natural control over their prosthetic hands. Among the biological signals, most commonly used to predict upper limb motor intentions, surface electromyography (sEMG), and axial acceleration sensor signals are essential components of shoulder-level upper limb prosthetic hand control systems. In this work, a pattern recognition system is proposed to create a plan for categorizing high-level upper limb prostheses in seven various types of shoulder girdle motions. Thus, combining seven feature groups, w
... Show MoreProsthetic hands are compensatory devices for the hand amputees as a result of injury, various accidents or birth deformities, types of prosthetic hand vary depending on the mechanism they operate and how they perform. There are common types in use that are characterized by their complex mechanisms, which are difficult for the amputee to use or exclude use because of their high cost, therefore the aim of this research is to design an artificial hand that is suitable in terms of simplicity of use and low cost and similar to a natural hand with regard to dimensions and shape that operated in the mechanism of links. This research involves Stress and strain analysis of the prosthetic hand and its fingers that modelled from (Petg CR)
... Show MoreHeuristic approaches are traditionally applied to find the optimal size and optimal location of Flexible AC Transmission Systems (FACTS) devices in power systems. Genetic Algorithm (GA) technique has been applied to solve power engineering optimization problems giving better results than classical methods. This paper shows the application of GA for optimal sizing and allocation of a Static Compensator (STATCOM) in a power system. STATCOM devices used to increase transmission systems capacity and enhance voltage stability by regulate the voltages at its terminal by controlling the amount of reactive power injected into or absorbed from the power system. IEEE 5-bus standard system is used as an example to illustrate the te
... Show Moreمن أجل الإجابة على التساؤل المتعلق بمشكلة البحث وهو؛ ماهي الصعوبات التي تواجه المدرسين باستخدام أساليب التدريس الحديثة بدرس التربية الرياضية للمرحلة المتوسطة؟ والعمل على إيجاد الحلول المناسبة لهذه الصعوبات. استخدم الباحثين المنهج الوصفي بالأسلوب المسحي على عينة من مدرسي ومدرسات التربية الرياضية في محافظة ديالى في المدارس المتوسطة والبالغ عددهم (81) مدرساً ومدرسة، وبعد إعداد الاستبانة الخاصة بالبحث وتوزيع
... Show MoreOptical Mark Recognition (OMR) is an important technology for applications that require speedy, high-accuracy processing of a huge volume of hand-filled forms. The aim of this technology is to reduce manual work, human effort, high accuracy in assessment, and minimize time for evaluation answer sheets. This paper proposed OMR by using Modify Bidirectional Associative Memory (MBAM), MBAM has two phases (learning and analysis phases), it will learn on the answer sheets that contain the correct answers by giving its own code that represents the number of correct answers, then detection marks from answer sheets by using analysis phase. This proposal will be able to detect no selection or select more than one choice, in addition, using M
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreThis study aims to examine the relationship between emotional intelligence and academic adaptation among a sample of gifted students in intermediate and high schools in Jeddah, Saudi Arabia. The study also seeks to examine the differences between group means in emotional intelligence and academic adaptation due to demographic variables (gender and school level). In addition, the study aims to examine the role of emotional intelligence in predicting the level of academic adaptation. The researcher performed the descriptive, correlational, predictive, and comparative approaches to collect the data from a sample comprised of (309) gifted students using the emotional intelligence scale developed by Bar-on (2000), whi
... Show More