A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Factor analysis is distinguished by its ability to shorten and arrange many variables in a small number of linear components. In this research, we will study the essential variables that affect the Coronavirus disease 2019 (COVID-19), which is supposed to contribute to the diagnosis of each patient group based on linear measurements of the disease and determine the method of treatment with application data for (600) patients registered in General AL-KARAMA Hospital in Baghdad from 1/4/2020 to 15/7/2020. The explanation of the variances from the total variance of each factor separately was obtained with six elements, which together explained 69.266% of the measure's variability. The most important variable are cough, idleness, fever, headach
... Show MoreBackground: The study was designed for the assessment of the knowledge of medical students regarding pandemics. In the current designed study, the level of awareness was checked and the majority of students were found aware of SARS-CoV and SARS-Cov2 (Covid-19).
Objective: To assess the awareness of SARS-CoV and SARS-Cov2 (Covid-19) among medical students of Pakistan.
Subjects and Methods: A cross-sectional survey was carried out in different universities of Pakistan from May to August 2020. A self-constructed questionnaire by Pursuing the clinical and community administration of COVID-19 given by the National Health Commission of the People's Republic of China was used am
... Show MoreActive Learning And Creative Thinking
The study aims to provide a Suggested model for the application of Virtual Private Network is a tool that used to protect the transmitted data through the Web-based information system, and the research included using case study methodology in order to collect the data about the research area ( Al-Rasheed Bank) by using Visio to design and draw the diagrams of the suggested models and adopting the data that have been collected by the interviews with the bank's employees, and the research used the modulation of data in order to find solutions for the research's problem.
The importance of the study Lies in dealing with one of the vital topics at the moment, namely, how to make the information transmitted via
... Show MoreThe last decade has seen a variety of modifications of glass-ionomer cements (GICs), such as inclusion of bioactive glass particles and dispensing systems. Hence, the aim was to systematically evaluate effect of mixing modes and presence of reactive glass additives on the physical properties of several GICs.
The physical properties of eight commercial restorative GICs; Fuji IX GP Extra (C&H), KetacTM Fill Plus Applicap (C&H), Fuji II LC (C&H), Glass Carbomer Ce
The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show MoreThe investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o
... Show More