A hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different methods. First, the models were initialized with random weights and trained from scratch. Afterward, the pre-trained models were examined as feature extractors. Finally, the pre-trained models were fine-tuned with intermediate layers. Fine-tuning was conducted on three levels: the fifth, fourth, and third blocks, respectively. The models were evaluated through recognition experiments using hand gesture images in the Arabic sign language acquired under different conditions. This study also provides a new hand gesture image dataset used in these experiments, plus two other datasets. The experimental results indicated that the proposed models can be used with intermediate layers to recognize hand gesture images. Furthermore, the analysis of the results showed that fine-tuning the fifth and fourth blocks of these two models achieved the best accuracy results. In particular, the testing accuracies on the three datasets were 96.51%, 72.65%, and 55.62% when fine-tuning the fourth block and 96.50%, 67.03%, and 61.09% when fine-tuning the fifth block for the first model. The testing accuracy for the second model showed approximately similar results.
Reading is one of the essential components of the English language. Countries that use English as a second language (ESL) sometimes have difficulties in reading and comprehension. According to many researches, mother tongue has proved some interferences with learning a second language. This study investigated the results of reading difficulties of young second language learners in terms of accuracy, comprehension, and rate using the Neale Analysis of Reading Ability test. The study was carried out in one of the High Schools for Boys in Hyderabad, India and included Grade five, aged 10-12 years. In order to understand the reading difficulties of English as a second language, a qualitative approach was employed. Interview, reading tes
... Show MoreThe status of women in any society is one of the basic criteria for measuring the degree of progress that society and follow renaissance march side by sidewith men , and is no doubt that women are now of interest to the state , even if limited , which promotes public ideologies on the need for womens participation in economic infrastructure operations and social and the right to gain information and knowledge, entertainment and exercise its role in development through its president and actor in the family and raising the next generation configuration.
And affect the basic tributaries that draws them women information and ideas have a direct impact on the composition of cultural and cognitive entity woman comes satellite channels
... Show MoreObjectives: To identify the impact of the brain consensus model on the acquisition of Arabic grammar concepts among students in the fourth grade, methodology: The pilot curriculum was used, and a partial control pilot design was adopted. There were 30 female students in the pilot group, 30 female students in the control group, and the two researchers were statistically rewarded among the two groups' students in some variables and used appropriate statistical means to analyse the results, including the test for two independent samples, the square (c2) and the Alpha Kronbach equation.Results: The pilot group outperformed the control group. The results showed that there is a significant statistical difference at the indicative level (0.05) for
... Show MorePrediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreUrinary tract infection is a bacterial infection that often affects the bladder and thus the urinary system. E. coli is one of the leading uropathogenic bacteria that cause urinary tract infections. Uropathogenic E. coli is highly effective and successful in causing urinary tract infections through biofilm formation and urothelial cell invasion mechanisms. Other organisms that cause urinary tract infections include members of the Enterobacteriaceae family, streptococci and staphylococci species and perch. In addition, K.penumoniae is another important gram-negative bacterium that causes urinary tract infections. With the PCR technique, unseen bacterial species can be detected using standard clinical microbiology methods. In this study, the
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show More