The alfalfa plant, after harvesting, was washed, dried, and grinded to get fine powder used in water treatment. We used the alfalfa plant with ethanol to make the alcoholic extract characterized by using (GC-Mass, FTIR, and UV) spectroscopy to determine active compounds. Alcoholic extract was used to prepare zinc nanoparticles. We characterized Zinc nanoparticles using (FTIR, UV, SEM, EDX Zeta potential, XRD, AFM). Zinc nanoparticle with Alfalfa extract and alfalfa powder were used in the treatment of water polluted with inorganic elements such as Cr, Mn, Fe, Cu, Cd, Ag by (Batch processing). The batch process with using alfalfa powder gets treated with Pb (51.45%), which is the highest percentage of treatment. Mn (13.18%), which is the lowest percentage of treatment. The batch process with using Zinc nanoparticles gets the result treated with Pb(98.822%), which is the highest percentage of treatment, and Mn (10.31%), which is the lowest percentage of treatment. When comparing alfalfa powder and zinc nanoparticle, it has been found that the treatment with zinc nanoparticle is more efficient in the removal of inorganic pollutants.
Background: White spot lesion is the first visible sign of dental caries that is characterized by demineralized lesion underneath an intact surface. Several studies demonstrated that they could be treated using noninvasive techniques like the use of fluoride or casein phospho-peptide and amorphous calcium phosphate. Improvement in aesthetic outcomes by covering the demineralized enamel is one of the advantages of the use of resin infiltration and opal-ustre microabrasion, which are two new techniques that had been used for treatment of white spot lesion. The purpose of this study was to evaluate the impact of resin infiltration and microabrasion in the microhardness of the artificial white spot lesions at various depths. Material and method
... Show MoreThis study aimed to assess orthodontic postgraduate students’ use of social media during the COVID-19 lockdown. Ninety-four postgraduate students (67 master’s students and 27 doctoral students) were enrolled in the study and asked to fill in an online questionnaire by answering questions regarding their use of social media during the COVID-19 lockdown. The frequency distributions and percentages were calculated using SPSS software. The results showed that 99% of the students used social media. The most frequently used type of social media was Facebook, 94%, followed by YouTube, 78%, and Instagram, 65%, while Twitter and Linkedin were used less, and no one used Blogger. About 63% of the students used elements of social media to l
... Show MoreThis work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show MoreABSTRACT
This study aimed to choose top stocks through technical analysis tools specially the indicator called (ratio of William index), and test the ability of technical analysis tools in building a portfolio of shares efficient in comparison with the market portfolio. These one technical tools were used for building one portfolios in 21 companies on specific preview conditions and choose 10 companies for the period from (March 2015) to (June 2017). Applied results of the research showed that Portfolio yield for companies selected according to the ratio of William index indicator (0.0406) that
... Show MoreAbstract
In this study, the effect of carboxylic methyl cellulose (CMC), and sodium dodcyl benzene sulfonate (SDBS) as an aqueous solution on the drag reduction was investigated. Different concentrations of (CMC) and (SDBS) such as (50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 ppm) were used to analyze the aqueous solution properties, including surface tension, conductivity, and shear viscosity. The optimum four concentrations (i.e., 50, 100, 200, and 300 ppm) of fluid properties were utilized to find their effect on the drag reduction. Two different PVC pipe diameters (i.e., 1" and 3/4") were used in this work. The results showed that blending CMC with SDBS gives
... Show MoreBackground: presence of lingual vascular foramina and canals in the interforaminal region may increase the risk ofsurgical complications during implant placement or any surgical procedure in this area. Aim of this study is the radiological evaluation of the anatomic characteristic of the lingual foramina and their vascular canals in the anterior of the mandible using cone beam computed tomography. Materials and Methods: Prospective study including 72 Iraqi subjects (31 male and 41 female) ranging from 20 to 59 years, all subjects attended Al-Sharaa dental clinic in AL-Najaf AL-Ashraf city, scanned with CBCT from September 2016 to February 2017. Using 3dimentional and sagittal cross section to detect lingual foramina and their vascular canal
... Show MoreBackground: presence of lingual vascular foramina and canals in the interforaminal regionmay increase the risk ofsurgical complications during implant placement or any surgical procedure in this area.Aim of this study is the radiological evaluation of the anatomic characteristic of the lingual foramina and their vascular canals in the anterior of the mandible using cone beam computed tomography. Materials and Methods: Prospective study including 72 Iraqi subjects (31 male and 41 female) ranging from 20 to 59 years, all subjects attended AL- Sharaa dental clinic in AL-Najaf AL-Ashraf city, scanned with CBCT from September 2016 to February 2017. Using 3dimentional and sagittal cross section to detect lingual foramina and their vascular canals
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show More