Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that represents the relationship between the compared texts and extracts the degree of similarity between them. Representing a text as a semantic network is the best knowledge representation that comes close to the human mind's understanding of the texts, where the semantic network reflects the sentence's semantic, syntactical, and structural knowledge. The network representation is a visual representation of knowledge objects, their qualities, and their relationships. WordNet lexical database has been used as a knowledge-based source while the GloVe pre-trained word embedding vectors have been used as a corpus-based source. The proposed method was tested using three different datasets, DSCS, SICK, and MOHLER datasets. A good result has been obtained in terms of RMSE and MAE.
Lasmiditan (LAS) was formulated as a nanoemulsion based in situ gel (NEIG)with the aim of improving its oral bioavailability via application intranasally. The solubility of LAS in oils, emulsifiers, and co-emulsifiers was determined to identify nanoemulsion (NE)components. Phase diagrams were constructed to identify the area of nanoemulsification. LAS NE was formulated using the spontaneous nanoemulsification method. Four NEs (F19, F24, F31, and F34) containing 7-15 % oleic acid (OA) as an oily phase, 40-55% labrasol (LR), and transcutol (TC) as emulsifier mixture at (1:1), (2:1), (3:1), and (1:2) ratio with 30-53 % (w/w) aqueous phase, having suitable optical transparency of 95–98%, globule size of 104-140 nm and polydisper
... Show MoreA dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreThe azo Schiff base [Reaction of 4-aminoanypyrine and P-hydroxy acetophenone] and O-Phenylene diamine have been prepared. One azo Schiff base chelate of Co(Il), Ni(II), Cu(II) and Zn(II)ion was also prepared. The chemical frameworks of the azo Schiff base and like elemental analyses (CHN), determinations of molar conductance, 1 H &13C NMR, IR mass and electronic spectroscopy .The elemental analyses exhibited the combination of [L: M] 1:1 ratio. Established on the values IR spectral, it is showed that the azo Schiff base compound acts as neutral hexadentate ligand bonded with the metal ion from two hydroxyl, two azomethine and two azo groups of the azo Schiff base compound in chelation was confirmed by IR , 1Hand 13CNMR spectral outco
... Show MoreIt is well known that drilling fluid is a key parameter for optimizing drilling operations, cleaning the hole, and managing the rig hydraulics and margins of surge and swab pressures. Although the experimental works represent valid and reliable results, they are expensive and time consuming. In contrast, continuous and regular determination of the rheological fluid properties can perform its essential functions during good construction. The aim of this study is to develop empirical models to estimate the drilling mud rheological properties of water-based fluids with less need for lab measurements. This study provides two predictive techniques, multiple regression analysis and artificial neural networks, to determine the rheological
... Show More