Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area. The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.
Software-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreThe research aims to identify the effect of applying administrative decentralization to an educational performance by assessing educational performance before and after the process of transferring powers from the federal government (the Iraqi Ministry of Education) to local governments (governorates) as well as identifying the appropriate central or decentralized administrative system to advance the educational reality and performance. To achieve the goal of the research, educational data was collected and analyzed, as well as the measurement of educational performance indicators and analysis during two phases, the first represents the stage of applying the central system and spanned between the academic year (2011-2012) and the
... Show MoreA field Experiment was carried out in Baghdad for the purpose of compare five horticulture machines during used two types of fuel deffirance in octane number, normal and super fuel which produced in Iraqi and measuring the vibrations transmitted of the three axes are longitudinal X , lateral Y and vertical Z from handlebar in (Mowers) to the operator which walks behind the mower, and the determine of the productivity practical of cutting, productivity passing and fuel consumption. Experiment Factorial used with two factors, The first factor was Five Mowers vary in width , types, weight and company manufacturer, The Second factor was the types of fuel used internal combination engine horticulture mowers were Normal fuel with Octane Number 82
... Show MoreThe research aimed to demonstrate the possibility of benefiting from the coordination between real estate and income tax as the independent variable on the tax outcome as the dependent variable as the dependent variable. Which were practiced within rented buildings, as information was obtained from real estate owners, and the annual controls for the year 2021 were relied upon in the process of calculating the tax amounts expected to be obtained. used in the tax inventory process lacks seriousness and continuous updating
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD) to estimate the parameters an
... Show MoreLorraine Hansberry’s A Raisin in the Sun (1959) appeared at the beginning of renewed political activity on the part of the blacks; it is a pamphlet about the dream of recognition of black people and the confusion of purposes and means to reach such recognition. It embodies ideas that have been uncommon on the Broadway stage in any period. Situations such as a black family moving into an all-white neighborhood were not familiar before this time; they were just beginning to emerge. In depicting this so realistically, Hansberry depends more on her personal experience as an African American embittered by social prejudices and discrimination.
The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show More