Preferred Language
Articles
/
bsj-7243
Comparison of Faster R-CNN and YOLOv5 for Overlapping Objects Recognition
...Show More Authors

Classifying an overlapping object is one of the main challenges faced by researchers who work in object detection and recognition. Most of the available algorithms that have been developed are only able to classify or recognize objects which are either individually separated from each other or a single object in a scene(s), but not overlapping kitchen utensil objects. In this project, Faster R-CNN and YOLOv5 algorithms were proposed to detect and classify an overlapping object in a kitchen area.  The YOLOv5 and Faster R-CNN were applied to overlapping objects where the filter or kernel that are expected to be able to separate the overlapping object in the dedicated layer of applying models. A kitchen utensil benchmark image database and overlapping kitchen utensils from internet were used as base benchmark objects. The evaluation and training/validation sets are set at 20% and 80% respectively. This project evaluated the performance of these techniques and analyzed their strengths and speeds based on accuracy, precision and F1 score. The analysis results in this project concluded that the YOLOv5 produces accurate bounding boxes whereas the Faster R-CNN detects more objects. In an identical testing environment, YOLOv5 shows the better performance than Faster R-CNN algorithm. After running in the same environment, this project gained the accuracy of 0.8912(89.12%) for YOLOv5 and 0.8392 (83.92%) for Faster R-CNN, while the loss value was 0.1852 for YOLOv5 and 0.2166 for Faster R-CNN. The comparison of these two methods is most current and never been applied in overlapping objects, especially kitchen utensils.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Intelligent EMG Pattern Recognition Control Method for Upper-Limb Multifunctional Prostheses: Advances, Current Challenges, and Future Prospects
...Show More Authors

View Publication
Scopus (151)
Crossref (149)
Scopus Clarivate Crossref
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features
...Show More Authors

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare between result of analysis of variance after and before use analysis covariance to Split-blocks design
...Show More Authors

This research aims to study the important of the effect of analysis of covariance manner for one of important of design for multifactor experiments, which called split-blocks experiments design (SBED) to deal the problem of extended measurements for a covariate variable or independent variable (X) with data of response variable or dependent variable Y in agricultural experiments that contribute to mislead the result when analyze data of Y only. Although analysis of covariance with discussed in experiments with common deign, but it is not found information that it is discussed with split-Blocks experiments design (SBED) to get rid of the impact a covariance variable. As part application actual field experiment conducted, begun at

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The synergistic effect of Zeolites type (?) with chlorinated rubber as flame retardants for unsaturated polyester resin: Jalil R. Ugal| Zahraa Q. Mahdi
...Show More Authors

In this work, the synergistic effect of chlorinated rubber (additive I),with zeolite 3A (additive II), zeolite 4A (additive III), and zeolite 5A (additive IV) in (1:1) weight percentage, on the flammability for unsaturated polyester resin was studied in the weight ratios for (3,7,10,13&15%) by preparing films of (130×130×3) mm in diameters. Three standard test methods used to measure were the flame retardation which are; ASTM: D-2863, ASTM: D- 635& ASTM: D-3014. Results obtained from these tests indicated that all of the additives were effective additive IV has the highest efficiency as a flame retardant.

View Publication
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of The College Of Languages (jcl)
(comparative analysis of phraseological units in the lexical-semantic field "on the material of Arabic and Russian languages"): (сопоставительный анализ фразеологических единиц лексико-семантического поля " на материале арабского и русского языков")
...Show More Authors

Establishing the systemic character of vocabulary, its relationship with other language systems, their interdependence creates the possibility of a comprehensive scientific study and description of the lexical system of each language, as well as contrastive comparative studies of several languages, including their phraseological composition.

It is known that not all words-components of phraseological units are equivalent in their role in the formation of the semantic content of phraseological units. In this regard, it is necessary to introduce the concept of a lexical dominant. To this we include words, which are kind of centers around which the entire semantic complex of phraseological units, the entire set of its words-componen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 03 2025
Journal Name
Periodicals Of Engineering And Natural Sciences (pen)
Comparison of some artificial neural networks for graduate students
...Show More Authors

Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Correlation between Serum and Tissue Markers in Breast Cancer Iraqi Patients
...Show More Authors

Breast cancer is the most prevalent malignancy among women worldwide, in Iraq it ranks the first among the population and the leading cause of cancer related female mortality. This study is designed to investigate the correlations between serum and tissue markers in order to clarify their role in progression or regression breast cancer. Tumor Markers are groups of substances, mainly proteins, produced from cancer cell or from other cells in the body in response to tumor.  The study was carried out from April 2018 to April 2019 with total number of 60 breast cancer women. The blood samples were collected from breast cancer women in postoperative and pretherapeutic who attended teaching oncology hospital of the medical city in Baghdad and

... Show More
View Publication Preview PDF
Scopus (12)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between robust methods in canonical correlation by using empirical influence function
...Show More Authors

       Canonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.

In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Analytical Study Compared Between Poisson and Poisson Hierarchical Model and Applied in Healthy Field
...Show More Authors

Through this research, We have tried to evaluate the health programs and their effectiveness in improving the health situation through a study of the health institutions reality in Baghdad to identify the main reasons that affect the increase in maternal mortality by using two regression models, "Poisson's Regression Model" and "Hierarchical Poisson's Regression Model". And the study of that indicator (deaths) was through a comparison between the estimation methods of the used models. The "Maximum Likelihood" method was used to estimate the "Poisson's Regression Model"; whereas the "Full Maximum Likelihood" method were used for the "Hierarchical Poisson's Regression Model

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2020
Journal Name
Defence Technology
A novel facial emotion recognition scheme based on graph mining
...Show More Authors

Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. T

... Show More
View Publication Preview PDF
Scopus (48)
Crossref (39)
Scopus Clarivate Crossref