In this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the formation of carbon nanotubes. In the second part of the research, a dye-sensitized solar cell (DSSC) is prepared to utilize carbon nanotube as the cathode electrode, titanium oxide nanoparticles as the anode electrode by using a natural dye (pomegranate dye). The assembled dye-sensitized solar cell (DSSC) is tested by two electrodes potentiostat using Xenon light source and all parameters are established; Vocp, Imax, Vmax, Isc and calculated full factor and conversion efficiency.
A new series of Sulfamethoxazole derivatives was prepared and examined for antifibrinolytic and antimicrobial activities. Sulfamethoxazole derivatives bear heterocyclic moieties such as 1,3,4-thiadiazine {3}, pyrazolidine-3,5-diol {4} 6-hydroxy-1,3,4-thiadiazinane-2-thione {5} and [(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-4-yl)diazenyl] {8}. Their structures were elucidated by spectral methods (FT-IR, H1-NMR). Physical properties are also determined for all compound derivatives. Recently prepared compounds were tested for their antimicrobial activity in the laboratory. Each screened compound showed good tendency to moderate antimicrobial activity.
This work deals with preparation of Sulfated Zirconia catalyst (SZ) for isomerization of n-hexane model and refinery light naphtha, as well as enhanced the role of promoters to get the target with the mild condition, stability, and to prevent formation of coke precursors on strong acidic sites of the catalyst. The prepared SZ catalysts were characterization by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer –Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA), Scanning Electron Microscope (SEM) and atomic force microscopy (AFM) Analyzer. The results illustrate that the maximum conversion and selectivity for n-hexane isomerization with Ni-WSZ and operating temperature of 150 °C
... Show MoreFour new complexes of Pd(II), Pt(II) and Pt(IV) with DMSO solution of the ligand 8-[(4-nitrophenyl)azo]guanine (L) have been synthesized. Reaction of the ligand with Pd(II) at different pH gave two new complexes, at pH=8, a complex of the formula [Pd(L)2]Cl2.DMSO (1) was formed, while at pH=4.5,the complex[Pd(L)3]Cl2.DMSO (2) was obtained. Meanwhile, the reaction of the ligand with Pt(II) and Pt(IV) revealed new complexes with the formulas[Pt(L)2]Cl2.DMSO (3)and [Pt(L)3]Cl4.DMSO (4) at pH 7.5 and 6 respectively.
All the preparations were performed after fixing the optimum pH and concentration. The effect of time on the stability of these complexes was checked. The stoichiometry of the complexes was determined by the mole ratio and Job
Co+2, Ni+2, Cu+2 as well Zn+2 compounds mixed ligand from 8-hydroxyquinoline(8-HQ) also tributylphosphine (PBu3) have been attended at aquatic ethyl alcohol for (1:2:2) (M:8-HQ:PBu3). Produced complexes have been identified by utilizing atomic absorption flame, FT-IR as well UV-Vis spectrum manners also magnetic susceptibility as well as conductivity methods. At addendum antibacterial efficiency from the ligands as well complexes oboist three species about bacteria have been as well examined. Ligands and their complexes show good bacterial efficiencies. Of the gained datum the octahedral geometry was proposed into whole prepared complexes
The synthesized ligand [4-chloro-5-(N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)sulfamoyl)-2-((furan-2-ylmethyl)amino)benzoic acid] (H2L1) was identified utilizing Fourier transform infrared spectroscopy (FT-IR), 1 H, 13 C – NMR, (C.H.N), Mass spectra, UVVis methods based on spectroscopy. To detect mixed ligand complexes, analytical and spectroscopic approaches such as micro-analysis, conductance, UV-Visible, magnetic susceptibility, and FT-IR spectra were utilized. Its mixed ligand complexes [M(L1)(Q)Cl2] [ where M= Co(II), Ni(II) , and Cd(II)] and complexes [Pd(L1)(Q)] and [Pt(L1)(Q)Cl2]; [H2L1] =β-enaminone ligand =L1 and Q= 8-Hydroxyquinoline = L2]. The results showed that the complexes were synthesised utilizing the molar ratio M: L1
... Show Moreوفقأ للدراسات السابقة تم تحضير ليكاند آزو جديد (ن-(3-اسيتايل-2-هيدروكسي-5-مثيل-فنيل)ن-(4-كاربوكسي-سايكلوهكسيل مثيل)-ملح الدايازونيوم) وبعد التحقق من الصيغة المقترحة وفق نتائج التحاليل وبعد استخدام الليكاند لتحضير سلسلة ن المعقدات باستخدام نسب مولية متساوية (1:1) من الليكاند وتفاعلها مع كل من املاح المنغنيز والكوبلت والنيكل والنحاس والخارصين وبعد التحقق وفق تقنيات التحاليل الطيفية والتشخيصية(الاشعة فوق البنف
... Show MoreHerein, the interfacial polymerization method has been used for the synthesis of PPy/NaVO3 composites with different compositions of NaVO3 (10 %, 20 %, 30 %, 40 % and 50 %) as an efficient electrode material for supercapacitors. The successful formation and composition of the as-prepared composites (PV1-PV5) were confirmed by FTIR, XRD, EDX, and SEM analysis. The electrochemical properties were investigated by cyclic voltammetry (CV), galvanometric charge–discharge measurement (GCD), and electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 electrolyte. As compared to other, the PV4 composite exhibit excellent specific capacitance of 391 F g−1 at a current density of 0.75 A/g with good cycling stability of ∼59 % after 1000 cycle
... Show MoreBiodiesel production process was attracted more attention recently due to the surplus quantity of glycerol (G) as a byproduct from the process. Glycerol Utilization must take in to consideration to fix this issue also, to ensure biodiesel industry sustainability. Highly amount of Glycerol converted to more benefit material Glycerol carbonate (GC) was one of the most allurement compound derived from glycerol by transesterification of glycerol with dimethyl carbonate (DMC). Various parameters have highly impact on transesterification was investigated like catalyst loading (1-5) %wt., molar ratio of DMC: glycerol (5:1 – 1:1), reaction time (30 - 150) min and temperature (40 – 80) ᴼC. The Optimum glycerol carbonate yie
... Show More