Today, the role of cloud computing in our day-to-day lives is very prominent. The cloud computing paradigm makes it possible to provide demand-based resources. Cloud computing has changed the way that organizations manage resources due to their robustness, low cost, and pervasive nature. Data security is usually realized using different methods such as encryption. However, the privacy of data is another important challenge that should be considered when transporting, storing, and analyzing data in the public cloud. In this paper, a new method is proposed to track malicious users who use their private key to decrypt data in a system, share it with others and cause system information leakage. Security policies are also considered to be integrated with the texts encrypted to ensure system safety and to prevent the violation of data owners ' privacy. For this purpose, before sending the data to the cloud, it must be encrypted in such a way that operations such as max, min, etc. can be performed on it. The proposed method uses order-preserving symmetric encryption (OPES), which does not require decryption or re-encryption for mathematical operations. This process leads to a great improvement in delay. The OPES scheme allows comparison operations to be performed directly on encrypted data without decryption operands. According to the results, it is obvious that the proposed strategy is in a better position compared to the base paper in terms of the system's ability to find the malicious elements that cause the problem of leakage and in terms of system security to prevent the violation of privacy.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreThe complexity and variety of language included in policy and academic documents make the automatic classification of research papers based on the United Nations Sustainable Development Goals (SDGs) somewhat difficult. Using both pre-trained and contextual word embeddings to increase semantic understanding, this study presents a complete deep learning pipeline combining Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Network (CNN) architectures which aims primarily to improve the comprehensibility and accuracy of SDG text classification, thereby enabling more effective policy monitoring and research evaluation. Successful document representation via Global Vector (GloVe), Bidirectional Encoder Representations from Tra
... Show MoreFounding a System to secure deposits and protecting the depositors is considered one of the important and exchanged subjects out there in the banking system/field in Iraq at the current time, and the reason behind the exchange and spread of this subject is due to the financial crisis of which the banking sector is suffering from and the stumbling of many banks, those factors have had led to the insecurity of the depositors and their mistrust towards banks, thus, it is necessary to create a system to secure deposits in which depositors would be compensated for the losses caused by the banks' failures. in addition, it could be a countermeasure system which maintains the banking stability, protects the rights of depositors and gains
... Show MoreCongenital absence of anterior cruciate ligament is highly uncommon occurrence. It has since been documented as a standalone anatomical entity or, more frequently, in conjunction with other congenital anomalies. Surgical treatment for this patient population has only been reported in very few cases. In this article, we share our experience in managing a case of unilateral congenital deficiency of anterior cruciate ligament (ACL) in a 13 years old female patient by physeal sparing arthroscopic ACL reconstruction, using All-inside technique.
This Paper aims to plan the production of the electrical distribution converter (400 KV/11) for one month at Diyala Public Company and with more than one goal for the decision-maker in a fuzzy environment. The fuzzy demand was forecasting using the fuzzy time series model. The fuzzy lead time for raw materials involved in the production of the electrical distribution converter (400 KV/11) was addressed using the fuzzy inference matrix through the application of the matrix in Matlab, and since the decision-maker has more than one goal, so a mathematical model of goal programming was create, which aims to achieve two goals, the first is to reduce the total production costs of the electrical distribution converter (400 KV/11) and th
... Show More
Abstract
The use of modern scientific methods and techniques, is considered important topics to solve many of the problems which face some sector, including industrial, service and health. The researcher always intends to use modern methods characterized by accuracy, clarity and speed to reach the optimal solution and be easy at the same time in terms of understanding and application.
the research presented this comparison between the two methods of solution for linear fractional programming models which are linear transformation for Charnas & Cooper , and denominator function restriction method through applied on the oil heaters and gas cookers plant , where the show after reac
... Show MoreAbstract. Hassan FM, Mahdi WM, Al-Haideri HH, Kamil DW. 2022. Identification of new species record of Cyanophyceae in Diyala River, Iraq based on 16S rRNA sequence data. Biodiversitas 23: 5239-5246. The biodiversity and water quality of the Diyala River require screening water in terms of biological contamination, because it is the only water source in Diyala City and is used for many purposes. This study aimed to identify a new species record of Cynaophyceae and emphasize the importance of using molecular methods beside classic morphological approaches, particularly in the water-shrinkage-aqua system. Five different sites along Diyala River were selected for Cyanophyceae identification. Morphological examination and 16S rRNA sequen
... Show More