In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the functionally
graded samples were enhanced by 43.69% and 52.74%, respectively, if loaded from the alumina-rich side.
On the other hand, when loading (FGM) from the epoxy side, the amount of decrease in bending resistance
was 122.4% while the improvement in bending modulus was 81.11% compared to pure epoxy. Scanning
electron microscopy (SEM) revealed the fracture surface of the impact samples and the gradient scattering of
nanoparticles in the epoxy matrix. Numerous applications can be used to manufacture the functionally
graded material by centrifugal casting method, including for the manufacture of gears and all bending
applications such as leaf springs.
Spray pyrolysis technique (SPT) is employed to synthesize cadmium oxide nanostructure with 3% and 5% Cobalt concentrations. Films are deposited on a glass substrate at 350 ᵒC with 150 nm thickness. The XRD analysis revealed a polycrystalline nature with cubic structure and (111) preferred orientation. Structural parameters represent lattice spacing, crystallite size, lattice parameter and dislocation density. Homogeneous surfaces and regular distribution of atoms were showed by atomic force microscope (AFM) with 1.03 nm average roughness and 1.22 nm root mean square roughness. Optical properties illustrated a high transmittance more than 85% in the range of visible spectrum and decreased with Co concentration increasing. The absorption
... Show MoreBackground: Polymers are very rarely used in their form. These modifications are carried out in order to improve the properties of polymers.Recently silver have been used successfully as antimicrobial (medical and dental) biomaterials that can prevent caries and infection of implants Purposes: The aim of the present in vitro study is to evaluate the effect of addition of silver nitrate to acrylic resin in different concentrationsthrough several tests part of these are: The effect of this additive on impact strength, transverse strength, and tensile strength of AgNO3 – loaded resin, and to assess any effect of addition of silver nitrate on coloration of acrylic resin. Materials and methods: Different concentrations of silver nitrate
... Show MoreThe In this experimental study, natural stone powder was utilized to improve a cohesive soil’s compaction and strength properties. According to the significant availability of limestone in the globe, it has been chosen for the purpose of the study, in addition to considering the existing rock industry massive waste. Stone powder was used in percentages of 4, 8, 12, 16% replaced from the soil weight in dry state. Some of cohesive soil’s consistency, shear, and compaction properties were depicted after improvement. The outcomes yielded in significant amendments in the experimented geotechnical properties after stone powder addition considering 60 days curing period. Cohesion and friction angle were notably increased by
... Show MoreThis paper presents a numerical analysis of the piled-raft foundation (PRF) based on the actual behavior of supporting piles. The raft was modeled as a thin plate, while the piles were modeled as springs in different ways. This research also aims to propose an analytical model of piles based on actual behavior at fieldwork. The results proved that the structural behavior of raft member can be improved through utilizing the actual behavior of supporting piles. When the piles were modeled as non-linear stiffness springs, settlements and bending stresses of raft foundation were reduce marginally as compared with those obtained from piles with linear stiffness springs.
Phase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn the era of the digital economy, public organizations need to consolidation the capabilities of entrepreneurial alertness to reduce the risks of sudden transformations and changes, and to find effective mechanisms to discover and invest in environmental opportunities proactively, as this concern has become a knowledge gap in public sector institutions, the current research aims to identify the role of digital competence in influencing on entrepreneurial alertness in the Central Bank of Iraq (CBI), the descriptive analytical approach was used as a research method to describe and analyze the main research variables. digital competence as an explanatory variable includes three dimensions: digital infrastructure, digital integration, and d
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
The new of compounds synthesized by sequence reactions starting from a reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride to produce the compounds [I]a,b, then the compounds[I]a,b reacted with sodium azide to yield compounds[II]a,b that reacted 1,3-dipolarcycloaddition reaction with acrylic acid to give compounds [III]a,b these compounds reacted with methanol led to ester compounds[IV]a,b then reacted with hydrazine to give acid hydrazide [V]a,b . Finally compounds [V]a,b reacted with aromatic aldehydes to product shiff bases derivatives. The compounds characterized by mp. , IR, 1HNMR in addition to mass spectroscopy for some of them the liquid crystals properties were studied by using polarized optical microsco
... Show MoreThis research include synthesized and characterization the compound [I] by reaction terephthaldehyde , mercaptoacetic acid and thiosemicarbazide with concentrated sulfuric acid then this compound reaction with ethyl chloroacetate and sodium acetate to product ester compound [II],the latter compound reaction with hydrazine hydrate to synthesized acid hydrazide [III] after that reaction with 4-alkoxy benzaldehyde[IV]n to synthesized Schiff bases compounds [V]n, the compound [VI] synthesized via reaction compound [I] with chloroacetic acid and sodium acetate then the compound[VI] reaction with 2-phenylenediamine in 4 N hydrochloric acid to product benzimidazole compound[VII]. The compounds characterized by melting points, FTIR and 1HNMR spectr
... Show MoreSensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show More