Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword generation approaches have been proposed by previous research, all with limitations to their honeyword generation processes, limited success in providing all required honeyword features, and susceptibility to many honeyword issues. This work will present a novel honeyword generation method that uses a proposed discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to solve a variety of optimization problems. The presented honeyword generation method will improve the generation process, improve honeyword features, and overcome the issues of previous techniques. This study will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology, examine the experimental results, and compare the new honeyword production method to those proposed in previous research.
Social Networking has dominated the whole world by providing a platform of information dissemination. Usually people share information without knowing its truthfulness. Nowadays Social Networks are used for gaining influence in many fields like in elections, advertisements etc. It is not surprising that social media has become a weapon for manipulating sentiments by spreading disinformation. Propaganda is one of the systematic and deliberate attempts used for influencing people for the political, religious gains. In this research paper, efforts were made to classify Propagandist text from Non-Propagandist text using supervised machine learning algorithms. Data was collected from the news sources from July 2018-August 2018. After annota
... Show MoreThe speaker identification is one of the fundamental problems in speech processing and voice modeling. The speaker identification applications include authentication in critical security systems and the accuracy of the selection. Large-scale voice recognition applications are a major challenge. Quick search in the speaker database requires fast, modern techniques and relies on artificial intelligence to achieve the desired results from the system. Many efforts are made to achieve this through the establishment of variable-based systems and the development of new methodologies for speaker identification. Speaker identification is the process of recognizing who is speaking using the characteristics extracted from the speech's waves like pi
... Show MoreThe widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreA simple setup of random number generator is proposed. The random number generation is based on the shot-noise fluctuations in a p-i-n photodiode. These fluctuations that are defined as shot noise are based on a stationary random process whose statistical properties reflect Poisson statistics associated with photon streams. It has its origin in the quantum nature of light and it is related to vacuum fluctuations. Two photodiodes were used and their shot noise fluctuations were subtracted. The difference was applied to a comparator to obtain the random sequence.
In this paper, we derive and prove the stability bounds of the momentum coefficient µ and the learning rate ? of the back propagation updating rule in Artificial Neural Networks .The theoretical upper bound of learning rate ? is derived and its practical approximation is obtained
Abstract
For sparse system identification,recent suggested algorithms are
-norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
Portable devices such as smartphones, tablet PCs, and PDAs are a useful combination of hardware and software turned toward the mobile workers. While they present the ability to review documents, communicate via electronic mail, appointments management, meetings, etc. They usually lack a variety of essential security features. To address the security concerns of sensitive data, many individuals and organizations, knowing the associated threats mitigate them through improving authentication of users, encryption of content, protection from malware, firewalls, intrusion prevention, etc. However, no standards have been developed yet to determine whether such mobile data management systems adequately provide the fu
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreThe enhancement of heat exchanger performance was investigated using dimpled tubes tested at different Reynolds numbers, in the present work four types of dimpled tubes with a specified configuration manufactured, tested and then compared performance with the smooth tube and other passive techniques performance. Two dimpled arrangements along the tube were investigated, these are inline and staggered at constant pitch ratio X/d=4, the test results showed that Nusselts number (heat transfer) of the staggered array is higher than the inline array by 13%. The effect of different depths of the dimple (14.5 mm and 18.5 mm) has been also investigated; a tube with large dimple diameter enhanced the Nusselts number by about 25% for the ran
... Show MoreThis study is an approach to assign the land area of Kirkuk city [ a city located in the northern of Iraq, 236 kilometers north of Baghdad and 83 kilometers south of Erbil [ Climatic atlas of Iraq, 1941-1970 ] into different multi zones by using Satellite image and Arc Map10.3, zones of different traffic noise pollutions. Land zonings process like what achieved in this paper will help and of it’s of a high interest point for the future of Kirkuk city especially urban
... Show More