Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword generation approaches have been proposed by previous research, all with limitations to their honeyword generation processes, limited success in providing all required honeyword features, and susceptibility to many honeyword issues. This work will present a novel honeyword generation method that uses a proposed discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to solve a variety of optimization problems. The presented honeyword generation method will improve the generation process, improve honeyword features, and overcome the issues of previous techniques. This study will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology, examine the experimental results, and compare the new honeyword production method to those proposed in previous research.
The process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreWater covers more than 75% of the earth's surface in the form of the ocean. The ocean investigation is far-fetched because the underwater environment has distinct phenomenal activities. The expansion of human activities inside underwater environments includes environmental monitoring, offshore field exploration, tactical surveillance, scientific data collection, and port security. This led to increased demand for underwater application communication systems. Therefore, the researcher develops many methods for underwater VLC Visible Light Communications. The new technology of blue laser is a type of VLC that has benefits in the application of underwater communications. This research article investigated the benefits of underwater blu
... Show MoreTexture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The bet
... Show Moren this study, data or X-ray images Fixable Image Transport System (FITS) of objects were analyzed, where energy was collected from the body by several sensors; each sensor receives energy within a specific range, and when energy was collected from all sensors, the image was formed carrying information about that body. The images can be transferred and stored easily. The images were analyzed using the DS9 program to obtain a spectrum for each object,an energy corresponding to the photons collected per second. This study analyzed images for two types of objects (globular and open clusters). The results showed that the five open star clusters contain roughly t
... Show MoreIn the absence of environmental regulation, food stays to be contaminated with heavy metals, which is becoming a big worry for human health. The present research focusses on the environmental and health effects of irrigating a number of crops grown in the soils surrounding the Al-Rustamia old plant using treated wastewater generated by the plant. The physicochemical properties, alkalinity, and electrical conductivity of the samples were evaluated, and vegetable samples were tested for Cd, Pb, Ni, and Zn, levels, and even the transfer factor (TF) from soils to crops and crop and multi-targeted risk, daily intake (DIM) of metals, and health risk index (HRI) was calculated. The findings found that the average contents of Zn, Pb, Ni, an
... Show MoreIn this paper we used frequentist and Bayesian approaches for the linear regression model to predict future observations for unemployment rates in Iraq. Parameters are estimated using the ordinary least squares method and for the Bayesian approach using the Markov Chain Monte Carlo (MCMC) method. Calculations are done using the R program. The analysis showed that the linear regression model using the Bayesian approach is better and can be used as an alternative to the frequentist approach. Two criteria, the root mean square error (RMSE) and the median absolute deviation (MAD) were used to compare the performance of the estimates. The results obtained showed that the unemployment rates will continue to increase in the next two decade
... Show MoreThe aim of this paper is to present a method for solving third order ordinary differential equations with two point boundary condition , we propose two-point osculatory interpolation to construct polynomial solution. The original problem is concerned using two-points osculatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by compared with conventional method .