Honeywords are fake passwords that serve as an accompaniment to the real password, which is called a “sugarword.” The honeyword system is an effective password cracking detection system designed to easily detect password cracking in order to improve the security of hashed passwords. For every user, the password file of the honeyword system will have one real hashed password accompanied by numerous fake hashed passwords. If an intruder steals the password file from the system and successfully cracks the passwords while attempting to log in to users’ accounts, the honeyword system will detect this attempt through the honeychecker. A honeychecker is an auxiliary server that distinguishes the real password from the fake passwords and triggers an alarm if intruder signs in using a honeyword. Many honeyword generation approaches have been proposed by previous research, all with limitations to their honeyword generation processes, limited success in providing all required honeyword features, and susceptibility to many honeyword issues. This work will present a novel honeyword generation method that uses a proposed discrete salp swarm algorithm. The salp swarm algorithm (SSA) is a bio-inspired metaheuristic optimization algorithm that imitates the swarming behavior of salps in their natural environment. SSA has been used to solve a variety of optimization problems. The presented honeyword generation method will improve the generation process, improve honeyword features, and overcome the issues of previous techniques. This study will demonstrate numerous previous honeyword generating strategies, describe the proposed methodology, examine the experimental results, and compare the new honeyword production method to those proposed in previous research.
Feature selection (FS) constitutes a series of processes used to decide which relevant features/attributes to include and which irrelevant features to exclude for predictive modeling. It is a crucial task that aids machine learning classifiers in reducing error rates, computation time, overfitting, and improving classification accuracy. It has demonstrated its efficacy in myriads of domains, ranging from its use for text classification (TC), text mining, and image recognition. While there are many traditional FS methods, recent research efforts have been devoted to applying metaheuristic algorithms as FS techniques for the TC task. However, there are few literature reviews concerning TC. Therefore, a comprehensive overview was systematicall
... Show MoreThis study investigates the performance of granular dead anaerobic sludge (GDAS) bio-sorbent as permeable reactive barrier in removing phenol from a simulated contaminated shallow groundwater. Batch tests have been performed to characterize the equilibrium sorption properties of the GDAS and sandy soil in phenol-containing aqueous solutions. The results of GDAS tests proved that the best values of operating parameters, which achieve the maximum removal efficiency of phenol (=85%), at equilibrium contact time (=3 hr), initial pH of the solution (=5), initial phenol concentration (=50 mg/l), GDAS dosage (=0.5 g/100 ml), and agitation speed (=250 rpm). Fourier transform infrared (FTIR) analysis proved that the carboxylic acid, aromatic, alk
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreSteganography is the art of secret communication. Its purpose is to hide the presence of information, using, for example, images as covers. The frequency domain is well suited for embedding in image, since hiding in this frequency domain coefficients is robust to many attacks. This paper proposed hiding a secret image of size equal to quarter of the cover one. Set Partitioning in Hierarchal Trees (SPIHT) codec is used to code the secret image to achieve security. The proposed method applies Discrete Multiwavelet Transform (DMWT) for cover image. The coded bit stream of the secret image is embedded in the high frequency subbands of the transformed cover one. A scaling factors ? and ? in frequency domain control the quality of the stego
... Show Moreيؤدي عرض معلومات مضللة او محرفة ضمن القوائم المالية والتي تعد أهم مصادر المعلومات الموثوقة التي يُعول عليها لاتخاذ القرارات السليمة الى عدم قدرتها على عكس نتيجة النشاط والمركز المالي لها او اعمال الوحدة الاقتصادية لتلك الفترات الزمنية بصورة صادقة وعادلة نتيجة لنوعية المعلومات المفصح عنها في القوائم المالية لذلك زاد الاهتمام بتطوير الممارسات المحاسبية لتتضمن افصاحات كافية بغرض اعطائهم صورة صادقة وعادلة
... Show More
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show More