Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Face recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreObjective: To identified the relationship between general and spinal Anesthesia upon breastfeeding and (demographic &reproductive) : Comparative Study. Methodology: The present study employs a descriptive comparative design held at the labor and delivery room , operational room for cesarean section and maternity word in maternity department at Al Emamain Al Kadhamain Medical City in Baghdad city. Data collection was initiated on 2nd January to end of March /2014. Purposive sample consisted of (150) mother and her neonate, The study sample divided into three groups:(50) under general anesthesia , (50) under
Chaotic systems have been proved to be useful and effective for cryptography. Through this work, a new Feistel cipher depend upon chaos systems and Feistel network structure with dynamic secret key size according to the message size have been proposed. Compared with the classical traditional ciphers like Feistel-based structure ciphers, Data Encryption Standards (DES), is the common example of Feistel-based ciphers, the process of confusion and diffusion, will contains the dynamical permutation choice boxes, dynamical substitution choice boxes, which will be generated once and hence, considered static,
While using chaotic maps, in the suggested system, called
Breast cancer (BC) is first of the top 10 malignancies in Iraq. Dose‐volume histograms (DVHs) are most commonly used as a plan evaluation tool. This study aimed to assess DVH statistics using three‐dimensional conformal radiotherapies in BC in an adjuvant setting.
A retrospective study of 70 histologically confirmed women diagnosed with BC was reviewed. The study was conducted between November 2020 and May 2021, planning for treatment with adjuvant three‐dimensional conformal radiotherapies. The treatment plan used for each woman was based on an analysis of the volumetric dose, inclu
There has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide low bit error rates (BER) along with information security. The aim of such activity is to steal or distort the information being conveyed. Optical Wireless Systems (basically Free Space Optic Systems, FSO) are no exception to this trend. Thus, there is an urgent necessity to design techniques that can secure privileged information against unauthorized eavesdroppers while simultaneously protecting information against channel-induced perturbations and errors. Conventional cryptographic techniques are not designed
... Show MoreImage quality has been estimated and predicted using the signal to noise ratio (SNR). The purpose of this study is to investigate the relationships between body mass index (BMI) and SNR measurements in PET imaging using patient studies with liver cancer. Three groups of 59 patients (24 males and 35 females) were divided according to BMI. After intravenous injection of 0.1 mCi of 18F-FDG per kilogram of body weight, PET emission scans were acquired for (1, 1.5, and 3) min/bed position according to the weight of patient. Because liver is an organ of homogenous metabolism, five region of interest (ROI) were made at the same location, five successive slices of the PET/CT scans to determine the mean uptake (signal) values and its standard deviat
... Show MoreChemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients’ bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and hypotheses subject to parametric uncertainties and exo
... Show More