Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
This research includes the application of non-parametric methods in estimating the conditional survival function represented in a method (Turnbull) and (Generalization Turnbull's) using data for Interval censored of breast cancer and two types of treatment, Chemotherapy and radiation therapy and age is continuous variable, The algorithm of estimators was applied through using (MATLAB) and then the use average Mean Square Error (MSE) as amusement to the estimates and the results showed (generalization of Turnbull's) In estimating the conditional survival function and for both treatments ,The estimated survival of the patients does not show very large differences
... Show MoreBackground: Breast cancer is the most common malignancy affecting the Iraqi population and the leading cause of cancer related mortality among Iraqi women. It has been well documented that prognosis of patients depends largely upon the hormone receptor contents and HER-2 over expression of their neoplasm. Recent studies suggest that Triple Positive (TP) tumors, bearing the three markers, tend to exhibit a relatively favorable clinical behavior in which overtreatment is not recommended. Aim: To document the different frequencies of ER/PR/HER2 breast cancer molecular subtypes focusing on the Triple Positive pattern; correlating those with the corresponding clinico-pathological characteristics among a sample of Iraqi patients diagnosed with th
... Show MoreThe prospective study has been designed to determine some biomarkers in Iraqi female patients with
breast cancer. The current study contained 30 patients whose tissue samples have been collected from
hospitals in Medical City in Baghdad after consent patients themselves and used immunohistochemical
technique to determine these markers. The results showed a significant correlation between ER and PR tissue
markers (Sig = 0.000) and a significant correlation between cyclin E phenotype and cyclin E intensity (Sig =
0.001).
FLI1 is a member of ETS family of transcription factors that regulate a variety of normal biologic activities including cell proliferation, differentiation, and apoptosis. The expression of FLI1 and its correlation with well-known breast cancer prognostic markers (ER, PR and HER2) was determined in primary breast tumors as well as four breast cancer lines including: MCF-7, T47D, MDA-MB-231 and MDA-MB-468 using RT-qPCR with either 18S rRNA or ACTB (β-actin) for normalization of data. FLI1 mRNA level was decreased in the breast cancer cell lines under study compared to the normal breast tissue; however, Jurkat cells, which were used as a positive control, showed overexpression compared to the normal breast. Regarding primary breast carcinoma
... Show MoreThe process of accurate localization of the basic components of human faces (i.e., eyebrows, eyes, nose, mouth, etc.) from images is an important step in face processing techniques like face tracking, facial expression recognition or face recognition. However, it is a challenging task due to the variations in scale, orientation, pose, facial expressions, partial occlusions and lighting conditions. In the current paper, a scheme includes the method of three-hierarchal stages for facial components extraction is presented; it works regardless of illumination variance. Adaptive linear contrast enhancement methods like gamma correction and contrast stretching are used to simulate the variance in light condition among images. As testing material
... Show MoreConsidering the expanding frequency of breast cancer and high incidence of vitamin D3 [25(OH)D3] insufficiently, this investigate pointed to explain a relation between serum [25(OH)D3] (the sunshine vitamin) level and breast cancer hazard. The current study aimed to see how serum levels of each [25(OH)D3], HbA1c%, total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were affected a woman’s risk of getting breast cancer. In 40 healthy volunteers and 69 untreated breast cancer patients with clinical and histological evidence which include outpatients and hospitalized admissions patients at the Oncology Center, Medical City / Baghdad - Iraq. Venous blood samp
... Show MoreThe current study included the separation of three alkaloid compounds from Anastatica Hierochuntica and studied the effect of the these compounds on cancerous cells , specifically liver cancer it was found that compound number one is the most influential or inhibiting at 50 percent followed by compound number three when using concentration of 400 μg/mL.
The Influence of Some Vitamins and Biochemical Parameters on Iraqi Females’ Patients with Malignant Breast Cancer"