Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.
Designing machines and equipment for post-harvest operations of agricultural products requires information about their physical properties. The aim of the work was to evaluate the possibility of introducing a new approach to predict the moisture content in bean and corn seeds based on measuring their dimensions using image analysis using artificial neural networks (ANN). Experimental tests were carried out at three levels of wet basis moisture content of seeds: 9, 13 and 17%. The analysis of the results showed a direct relationship between the wet basis moisture content and the main dimensions of the seeds. Based on the statistical analysis of the seed material, it was shown that the characteristics
Amygdalin (d-Mandelonitrile 6-O-β-d-glucosido-β-d-glucoside) and its semi synthetic product is Laetrile ( also called vitamin B17): a natural cyanogenic glycoside occurring in the seeds of some edible plants, such as bitter almonds and peaches. Early in the 19th century, Amygdalin was first isolated in 1830 by two French chemists, Robiquet and Boutron-Charlard, as active components in various fruit pits and raw nuts. However, the systematized study of vitamin B17 started when chemist Bohn (1802) discovered that a hydrocyanic acid is released during distillation of the water from bitter almonds. The various pharmacological effects of Laetrile include antiatherogenic, activity in renal fibrosis, pulmonary fibrosis, immune regulation, ant
... Show MoreObjective: Assessment the psychological problems in patients with colorectal cancer, and to find out the
relationship between socio-demographic characteristics such as (age, sex, marital status, educational level,
and occupation) and psychological problems for those patients.
Methodology: A descriptive design is employed through the present study from 1
st July 2011 to 25
th December
2011 in order to study the quality of life in colorectal cancer patients with psychological problems.
A purposive (non probability) sample is selected for the study which includes (60) patients diagnosed with
colorectal cancer were treated in Mosul Oncology and Nuclear Medicine hospital or the patients who visited
the outpatient cl
Background: The transcriptional control of various cell types, especially in the development or functioning of immune system cells involved in either promoting or inhibiting the immune response against cancer, is significantly influenced by DNA or RNA methylation. Multifaceted interconnections exist between immunological or cancer cell populations in the tumor's microenvironment (TME). TME alters the fluctuating DNA (as well as RNA) methylation sequences in these immunological cells to change their development into pro- or anti-cancer cell categories (such as T cells, which are regulatory, for instance). Objective: This review highlights the impact of DNA and RNA methylation on myeloid and lymphoid cells, unraveling their intricate
... Show Moreconventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
The aims of the present study are to evaluate the levels of CA19-9 in sera and tissues' homogenate of breast and thyroid benign patients in order to assess its use as an early diagnostic parameter in differentiation between malignant and benign cases. The study was conducted on 8 patients with breast benign tumor and 8 patients with thyroid benign tumor, by the enzyme linked immunosorbent assay (ELISA) technique. The results of CA19-9 levels in sera were (15 ±1.58 and 10.67 ±2.08)U/ml respectively compared with serum CA19-9 levels of control group which was 7.74 ±4.92 U/ml, the results were found to be highly significantly in breast tumor patients and non significantly in thyroid
... Show MoreActive learning is a teaching method that involves students actively participating in activities, exercises, and projects within a rich and diverse educational environment. The teacher plays a role in encouraging students to take responsibility for their own education under their scientific and pedagogical supervision and motivates them to achieve ambitious educational goals that focus on developing an integrated personality for today’s students and tomorrow’s leaders. It is important to understand the impact of two proposed strategies based on active learning on the academic performance of first-class intermediate students in computer subjects and their social intelligence. The research sample was intentionally selected, consis
... Show More The current paper studied the concept of right n-derivation satisfying certified conditions on semigroup ideals of near-rings and some related properties. Interesting results have been reached, the most prominent of which are the following: Let M be a 3-prime left near-ring and A_1,A_2,…,A_n are nonzero semigroup ideals of M, if d is a right n-derivation of M satisfies on of the following conditions,
d(u_1,u_2,…,(u_j,v_j ),…,u_n )=0 ∀ 〖 u〗_1 〖ϵA〗_1 ,u_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n ϵA〗_u;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=0 ∀u_1,v_1 〖ϵA〗_1,u_2,v_2 〖ϵA〗_2,…,u_j,v_j ϵ A_j,…,〖u_n,v_n ϵA〗_u ;
d((u_1,v_1 ),(u_2,v_2 ),…,(u_j,v_j ),…,(u_n,v_n ))=(u_
In general, the importance of cluster analysis is that one can evaluate elements by clustering multiple homogeneous data; the main objective of this analysis is to collect the elements of a single, homogeneous group into different divisions, depending on many variables. This method of analysis is used to reduce data, generate hypotheses and test them, as well as predict and match models. The research aims to evaluate the fuzzy cluster analysis, which is a special case of cluster analysis, as well as to compare the two methods—classical and fuzzy cluster analysis. The research topic has been allocated to the government and private hospitals. The sampling for this research was comprised of 288 patients being treated in 10 hospitals. As t
... Show More