Preferred Language
Articles
/
bsj-6782
Breast Cancer MRI Classification Based on Fractional Entropy Image Enhancement and Deep Feature Extraction
...Show More Authors

Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature extraction step to enhance and preserve the fine details of the breast MRI scans boundaries by using fractional integral entropy FIE algorithm, to reduce the effects of the intensity variations between MRI slices, and finally to separate the right and left breast regions by exploiting the symmetry information. The obtained features are classified using a long short-term memory (LSTM) neural network classifier. Subsequently, all extracted features significantly improves the performance of the LSTM network to precisely discriminate between pathological and healthy cases. The maximum achieved accuracy for classifying the collected dataset comprising 326 T2W-TSE images and 326 STIR images is 98.77%. The experimental results demonstrate that FIE enhancement method improve the performance of CNN in classifying breast MRI scans. The proposed model appears to be efficient and might represent a useful diagnostic tool in the evaluation of MRI breast scans.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Fri Dec 30 2016
Journal Name
Al-kindy College Medical Journal
Deep Vein Thrombosis Predisposing Factors Analysis Using Association Rules Mining
...Show More Authors

Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 28 2018
Journal Name
International Journal Of Engineering & Technology
Modified Strut Effectiveness Factor for FRP-Reinforced Concrete Deep Beams
...Show More Authors

A few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sat Jun 30 2012
Journal Name
Al-kindy College Medical Journal
Treatment of Nasopharyngeal Carcinoma by Using Deep X-Ray Therapy
...Show More Authors

Background: Nasopharyngeal carcinoma (NPC) is one of the most challenging tumors because of their relative inaccessibility and that their spread can occur without significant symptoms with few signs, but Radiotherapy (RT) has a role in treatment of it.
Objectives: To show that RT is still the modality of choice in the treatment of NPC, to study modes of presentations, commonest histopathological types and their percentages, to show differences in the sensitivities of these types to RT and to find out a 5 year survival rate(5YSR) and its relation with lymph node involvement.
Methods: This is a retrospective study of 44 patients with NPC who were treated with routine RT from 1988-2007 at the institute of radiology and nuclear medicin

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (14)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Thu May 04 2023
Journal Name
Journal Of Communicable Diseases
Enhancement of Swarming and Inhibition of Prodigiosin in Serratia marcescens by Glyceryl Trinitrate
...Show More Authors

Introduction:Serratia marcescens is a gram-negative pathogen of many species. Its pathogenicity and survival are linked to its capacity to build biofilms as well as its strong inherent resistance to antimicrobials and cleaning agents. Objectives: To analyse the impact of glyceryl trinitrate (GTN) on the gene expression of QS-related genes (rssB, rsmA,and pigP) of S. marcescens. Methodology: The broth microdilution technique estimated the bactericidal effectiveness of glyceryl trinitrate. The presence of rssB, rsmA,and pigP in S. marcescens isolates was detected using PCR. qRT-PCR was used to assess the effect of GTN on rssB, rsmA,and pigPgene expression. Results: The results demonstrated that GTN has no effect on S. marcesce

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Iraqi Journal Of Physics
Enhancement of thermal stability and wettability for epoxy/Cu coated carbon fiber composites
...Show More Authors

    This research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.

   The increase of surface polarity after coating cause decreas

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Nov 01 2025
Journal Name
Journal Of Molecular Liquids
Chitosan salt as a dual-function agent for CO₂ sequestration and acidizing enhancement
...Show More Authors

The utilization of carbon dioxide (CO₂) to enhance wellbore injectivity presents a cost-effective and sustainable strategy for mitigating greenhouse gas emissions while improving reservoir performance. This study introduces an environmentally friendly method employing a water-soluble chitosan salt (CS) that generates a carbonated-rich acid solution upon contact with dry CO₂ at 25 °C and 508 psi. CS solutions (100–2000 ppm) were prepared and evaluated for CO₂ uptake, acid generation, and rheological behavior. Results show that 1000 ppm achieves an optimal CO2 uptake (2612 mg/l), with moderate viscosity increase (from 1.52 to 3.37 cp), while higher concentrations exhibit a sharp rise due to polymer-like network formation. Core floodi

... Show More
View Publication
Crossref