The human kidney is one of the most important organs in the human body; it performs many functions
and has a great impact on the work of the rest of the organs. Among the most important possible treatments is
dialysis, which works as an external artificial kidney, and several studies have worked to enhance the
mechanism of dialysate flow and improve the permeability of its membrane. This study introduces a new
numerical model based on previous research discussing the variations in the concentrations of sodium,
potassium, and urea in the extracellular area in the blood during hemodialysis. We simulated the differential
equations related to mass transfer diffusion and we developed the model in MATLAB Simulink environment.
A value of 700 was appeared to be the most appropriate as a mass transfer coefficient leading to the best
permeability. The suggested models enabled to track the temporal variations of urine, K and Na concentrations
in blood streamline. This also produced the time needed to reach the requested concentrations mentioned in
literature studies (960 ms). Concentrations evaluation was performed with error rates not exceeding 2% for all
ions compared to the normal values of human blood.The current work presents the first step towards combinig
the mass transfer and diffusion principles with our efforts in designing and implementing an electrophoresisbased implantable kidney.
Twisted tape insertion in smooth plain tube is one of types of passive methods that is used to enhance heat transfer. Swirl fluid flow inside tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with twisted tape has twist ratio of y = (H/D) = (150/17) =8.8 along with a plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nusselt number
... Show MoreTwisted tape insertion in the smooth plain tube is one of the types of passive methods that are used to enhance heat transfer. Swirl fluid flow inside the tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with a twisted tape of twist ratio of y = (H/D) = (150/17) =8.8 along the plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nus
... Show MoreResearch objective: This research aims to unveil how to use the method of referral in understanding the Holy Quran.
The reason for choosing the research: The one that invited me to write on this topic is the importance of the referral method, so I liked the research in it, and unveiled this wonderful Qur’anic method, so that it helps to understand the intention of God Almighty in his dear book.
The research plan: The research was divided into three topics and a conclusion.
As for the first topic, it is divided into two requirements. The first requirement deals with the definition of referral language.
In the second re
This paper studied the behaviour of reinforced reactive powder concrete (RPC) two-way slabs under static load. The experimental program included testing three simply supported slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. Tested specimens were of identical properties except their steel fibers volume ratio (0.5 %, 1 %, and 1.5 %). Static test results revealed that, increasing steel fibers volume ratio from 0.5% to 1% and from 1% to 1.5%, led to an increase in: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). The stiffness and ductility of the specimens also increased. A
... Show MoreSilica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,
... Show MoreThis paper represents an experimentalattempt to predict the influence of CO2-MAG welding variables on the shape factors of the weld joint geometry. Theinput variables were welding arc voltage, wire feeding speed and gas flow rate to investigate their effects on the shape factorsof the weld joint geometry in terms of weld joint dimensions (bead width, reinforcement height, and penetration). Design of experiment with response surface methodology technique was employed to buildmathematical models for shape factors in terms of the input welding variables. Thepredicted models were found quadratic type and statistically checked by ANOVA analysis for adequacy purpose. Also, numerical and graphical optimizations were carried out
... Show MoreThe proper operation, and control of wastewater treatment plants, is receiving an increasing attention, because of the rising concern about environmental issues. In this research a mathematical model was developed to predict biochemical oxygen demand in the waste water discharged from Abu-Ghraib diary factory in Baghdad using Artificial Neural Network (ANN).In this study the best selection of the input data were selected from the recorded parameters of the wastewater from the factory. The ANN model developed was built up with the following parameters: Chemical oxygen demand, Dissolved oxygen, pH, Total dissolved solids, Total suspended solids, Sulphate, Phosphate, Chloride and Influent flow rate. The results indicated that the constructed A
... Show MoreWe study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show More