The university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized.
Energy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreA high sensitivity, low power and low cost sensor has been developed for photoplethysmography (PPG) measurement. The PPG principle was applied to follow the dilatation and contraction of skin blood vessels during the cardiac cycle. A standard light emitting diodes (LEDs) has been used as a light emitter and detector, and in order to reduce the space, cost and power, the classical analogue-to-digital converters (ADCs) replaced by the pulse-based signal conversion techniques. A general purpose microcontroller has been used for the implementation of measurement protocol. The proposed approach leads to better spectral sensitivity, increased resolution, reduction in cost, dimensions and power consumption. The basic sensing configuration prese
... Show MoreNanofiltration (NF) ceramic membrane have found increasing applications particularly in wastewater and water treatment. In order to estimate and optimize the performance of NF membranes, the membrane should be characterized correctly in terms of their basic parameters such as effective pore radius (rp) and equivalent effective thickness as well as effective surface charge ( ), the effective charge density ( ) and Donnan potential ( ). The impact of electrokinetic (zeta) potential on the membrane surface charge density, effective membrane charge density and Donnan potential at two different concentrations of the reference solutions 0.001, 0.01 M sodium chloride at various pH values from 3 to 9, and effective po
... Show More In this paper the research represents an attempt of expansion in using the parametric and non-parametric estimators to estimate the median effective dose ( ED50 ) in the quintal bioassay and comparing between these methods . We have Chosen three estimators for Comparison. The first estimator is
( Spearman-Karber ) and the second estimator is ( Moving Average ) and The Third estimator is ( Extreme Effective Dose ) . We used a minimize Chi-square as a parametric method. We made a Comparison for these estimators by calculating the mean square error of (ED50) for each one of them and comparing it with the optimal the mean square
KE Sharquie, AA Noaimi, MS Abass, American Journal of Dermatology and Venereology, 2019 - Cited by 4
In the latest years there has been a profound evolution in computer science and technology, which incorporated several fields. Under this evolution, Content Base Image Retrieval (CBIR) is among the image processing field. There are several image retrieval methods that can easily extract feature as a result of the image retrieval methods’ progresses. To the researchers, finding resourceful image retrieval devices has therefore become an extensive area of concern. Image retrieval technique refers to a system used to search and retrieve images from digital images’ huge database. In this paper, the author focuses on recommendation of a fresh method for retrieving image. For multi presentation of image in Convolutional Neural Network (CNN),
... Show MoreIn this paper, the proposed phase fitted and amplification fitted of the Runge-Kutta-Fehlberg method were derived on the basis of existing method of 4(5) order to solve ordinary differential equations with oscillatory solutions. The recent method has null phase-lag and zero dissipation properties. The phase-lag or dispersion error is the angle between the real solution and the approximate solution. While the dissipation is the distance of the numerical solution from the basic periodic solution. Many of problems are tested over a long interval, and the numerical results have shown that the present method is more precise than the 4(5) Runge-Kutta-Fehlberg method.
This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro
... Show More