Preferred Language
Articles
/
bsj-6652
Generative Adversarial Network for Imitation Learning from Single Demonstration
...Show More Authors

Imitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing considered tasks despite the limitation in the number of expert demonstrations, which clearly indicate the potential of our model.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Feb 27 2019
Journal Name
Journal Of Nano Research
A Specific NH<sub>3</sub> Gas Sensor of a Thick MWCNTs-OH Network for Detection at Room Temperature
...Show More Authors

NH3 gas sensor was fabricated based on deposited of Functionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) suspension on filter paper substrates using suspension filtration method. The structural, morphological and optical properties of the MWCNTs film were characterized by XRD, AFM and FTIR techniques. XRD measurement confirmed that the structure of MWCNTs is not affected by the preparation method. The AFM images reflected highly ordered network in the form of a mat. The functional groups and types of bonding have appeared in the FTIR spectra. The fingerprint (C-C stretch) of MWCNTs appears in 1365 cm-1, and the backbone of CNTs observed at 1645 cm-1. A homemade sensi

... Show More
View Publication
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Fri May 16 2025
Journal Name
Asean Journal Of Science And Engineering
Enhancing Predictive Maintenance in Energy Systems Using a Hybrid Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) Framework for Rotating Machinery
...Show More Authors

This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Jun 29 2016
Journal Name
Iraqi Journal Of Market Research And Consumer Protection
Effect of adding the Flavonoids from Zizypus spina-christi leaves in redox indicators of the fat extracted from Cows, Sheeps bones and storage on defferent temperature and periods.: Effect of adding the Flavonoids from Zizypus spina-christi leaves in redox indicators of the fat extracted from Cows, Sheeps bones and storage on defferent temperature and periods.
...Show More Authors


Flavonoids were extracted from Zizyphus spina-christi leaves by Ethyl acetate after acid digested and used as antioxidant. The dried extract was added separately to each sample of fat extracted from hallow cow and sheep bones as follows: T1 cow fat, T2 control for cow fat, T3 sheep fat and T4 control for sheep fat (the control T2 and T4 reffered to samples without added antioxidant).
Samples were stored at -18, 5, 25 and 55 °C for 28 days. The storage trials were conducted at -18, 5 and 25 °C for 28 days for T1, T2, T3 and T4. The chemical indices examined initially and at the end of storage period. PVs was 1.46, 1.46, 1.8 and 1.8 meq/ Kg oil respectively, FFA values were 0.245, 0.245, 0.244 and 0.244% respectively and TBA va

... Show More
View Publication Preview PDF
Publication Date
Tue Feb 05 2019
Journal Name
Journal Of The College Of Education For Women
Employ GIS technology GIS in the educational process – learning
...Show More Authors

Witnessing human societies with the turn of the century atheist twenty huge revolution in information , the result of scientific and technological developments rapidly in space science and communications , and that made the whole world is like a small village not linked by road as it was in ancient times, through the rapid transportation as was the case a few years ago , thanks to the remote sensing devices that roam in space observant everything on the ground , that the information networks that overflowed the world a tremendous amount of information provided for each inhabitants of the earth , which made this information requirement for human life and human survival and well-being , as it has allowed that information to humans opportun

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 09 2023
Journal Name
2023 15th International Conference On Developments In Esystems Engineering (dese)
Deep Learning-Based Speech Enhancement Algorithm Using Charlier Transform
...Show More Authors

View Publication
Scopus (10)
Crossref (7)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
3D scenes semantic segmentation using deep learning based Survey
...Show More Authors
Abstract<p>Semantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po</p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials &amp; Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (18)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Engineering
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result

... Show More