Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopting a combination of Singular Value Decomposition (SVD), and Discrete Wavelet Transform (DWT). The combination of these two signal processing techniques is gaining lots of interest in the field of speaker and speech recognition. As a cough recognition approach, we found it well-performing, as it generates and utilizes an efficient minimum number of features. Mean and median frequencies, which are known to be the most useful features in the frequency domain, are applied to generate an effective statistical measure to compare the results. The hybrid structure of DWT and SVD, adopted in this approach adds to its efficiency, where a 200 times reduction, in terms of the number of operations, is achieved. Despite the fact that symptoms of the infected and non-infected people used in the study are having lots of similarities, diagnosis results obtained from the application of the proposed approach show high diagnosis rate, which is proved through the matching with relevant PCR tests. The proposed approach is open for more improvements with its performance further assured by enlarging the dataset, while including healthy people.
Noor oil field is one of smallest fields in Missan province. Twelve well penetrates the Mishrif Formation in Noor field and eight of them were selected for this study. Mishrif formation is one of the most important reservoirs in Noor field and it consists of one anticline dome and bounded by the Khasib formation at the top and the Rumaila formation at the bottom. The reservoir was divided into eight units separated by isolated units according to partition taken by a rounding fields.
In this paper histograms frequency distribution of the porosity, permeability, and water saturation were plotted for MA unit of Mishrif formation in Noor field, and then transformed to the normal distribution by applying the Box-Cox transformation alg
... Show MoreABSTRUCT
In This Paper, some semi- parametric spatial models were estimated, these models are, the semi – parametric spatial error model (SPSEM), which suffer from the problem of spatial errors dependence, and the semi – parametric spatial auto regressive model (SPSAR). Where the method of maximum likelihood was used in estimating the parameter of spatial error ( λ ) in the model (SPSEM), estimated the parameter of spatial dependence ( ρ ) in the model ( SPSAR ), and using the non-parametric method in estimating the smoothing function m(x) for these two models, these non-parametric methods are; the local linear estimator (LLE) which require finding the smoo
... Show MoreThis research reviews the aesthetic variables that were founded according to (theatrical rehearsal) as one of the most important pillars on which the theatrical process is based, because of its necessity in developing theatrical art on several levels that helped the theatrical director in organizing his work, and this became clear through the research chapters represented in the first chapter (methodological framework) and the second chapter, which consisted of the first topic (the duality of watching / rehearsal) and the second topic (the applications of theatrical rehearsal in theatrical experiences), all the way to the third chapter (research procedures), which included the analysis of theatrical rehearsals (sharing on life), and the
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show MoreThe Iraqi economy has suffered for a long period of inflation because of the Iraq war and the resolutions and the sanctions that were imposed on Iraq, this phenomenon overshadowed at various aspects of the economy including the tax revenue that the State seeks to optimize the total income for the budget, the research covers the years 1990-2010, these years have been divided according to the country's economic variables.
The research adopted on econometrics analysis that is based on the information and data available on topics and has been using statistical methods to test functions are formulated.
Research concluded that rates of inflation and GDP impact is limited to direct taxation and indirect in current prices a
... Show MoreQuality control charts are limited to controlling one characteristic of a production process, and it needs a large amount of data to determine control limits to control the process. Another limitation of the traditional control chart is that it doesn’t deal with the vague data environment. The fuzzy control charts work with the uncertainty that exists in the data. Also, the fuzzy control charts investigate the random variations found between the samples. In modern industries, productivity is often of different designs and a small volume that depends on the market need for demand (short-run production) implemented in the same type of machines to the production units. In such cases, it is difficult to determine the contr
... Show MoreMultilocus haplotype analysis of candidate variants with genome wide association studies (GWAS) data may provide evidence of association with disease, even when the individual loci themselves do not. Unfortunately, when a large number of candidate variants are investigated, identifying risk haplotypes can be very difficult. To meet the challenge, a number of approaches have been put forward in recent years. However, most of them are not directly linked to the disease-penetrances of haplotypes and thus may not be efficient. To fill this gap, we propose a mixture model-based approach for detecting risk haplotypes. Under the mixture model, haplotypes are clustered directly according to their estimated d
Background: Knowledge about the prevalence and distribution of pathologies in a particular location is important when a differential diagnosis is being formulated. The aim of this study was to describe the prevalence and the clinicopathological features of odontogenic cysts and tumors affecting the maxilla and to discuss the unusual presentation of those lesions within maxillary sinus.
Materials and Methods: A multicenter retrospective analysis was performed on pathology archives of patients who were diagnosed with maxillary odontogenic cysts and tumors from 2010 to 2020. Data were collected with respect to age, gender and location.
Result: A total of 384 cases was identified, 320 (83.3%) cases were diagnosed as odontogenic
... Show More