This research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of OG dye highly depends on H2O2 concentration (1.7-5.28 mM), catalyst dose (0.4-1.6 g/L), pH (2-7), initial OG concentration (25-75 mg/L), and temperature (20-50 ℃). Batch experiments showed that 94.8 % of 50 mg/L of OG dye was removed within the optimum peroxide concentration, dose, pH and temperature which were 3.52 mM, 1 g/L, 3, and 40℃ respectively along with 30 min contact time. The results of kinetic models showed that OG removal followed the second-order model. Finally, the thermodynamic study of reaction was also examined and concluded to endothermic reaction with 29.725 kJ/mol activation energy.
The removal of congo red (CR) is a critical issue in contemporary textile industry wastewater treatment. The current study introduces a combined electrochemical process of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of this dye. Moreover, it discusses the formation of a triple composite of Co, Mn, and Ni oxides by depositing fixed salt ratios (1:1:1) of these oxides in an electrolysis cell at a constant current density of 25 mA/cm2. The deposition ended within 3 hours at room temperature. X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and energy dispersive X-ray (EDX) characterized the structural and surface morphology of the multi-oxide sedim
... Show MoreA method is developed for the determination of iron (III) in pharmaceutical preparations by coupling cloud point extraction (CPE) and UV-Vis spectrophotometry. The method is based on the reaction of Fe(III) with excess drug ciprofloxacin (CIPRO) in dilute H2SO4, forming a hydrophobic Fe(III)- CIPRO complex which can be extracted into a non-ionic surfactant Triton X-114, and iron ions are determined spectrophotometrically at absorption maximum of 437 nm. Several variables which impact on the extraction and determination of Fe (III) are optimized in order to maximize the extraction efficiency and improve the sensitivity of the method. The interferences study is also considered to check the accuracy of the procedure. The results hav
... Show MoreA group of amino derivatives [4-aminobenzenesulfonamide,4-amino-N¹ methylbenzenesulfonamide, or N¹-(4-aminophenylsulfonyl)acetamide] bound to carboxyl group of mefenamic acid a well known nonsteroidal anti-inflammatory drugs (NSAIDs) were designed and synthesized for evaluation as a potential anti-inflammatory agent. In vivo acute anti-inflammatory activity of the final compounds (9, 10 and 11) was evaluated in rat using egg-white induced edema model of inflammation in a dose equivalent to (7.5mg/Kg) of mefenamic acid. All tested compounds produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the 4-amino-N-methylbenzenesulfonamide derivative (c
... Show More