This study was conducted on Lake Hamrin situated in Diyala governorate, focal Iraq, between latitudes 44º 53ʹ 26.16 '- 45º 07 ʹ 28.03ʺ and 34º 04ʹ 24.75ʺ ــ 34º 19ʹ 12.74ʺ . As in this study, the surface area of Hamrin Lake was calculated from satellite images during the period from October 2019 to September 2020, with an average satellite image for each month, furthermore,by utilizing the Normalized Differences Water Index (NDWI), the largest surface area was 264,617 km2 for October and the lowest surface area 140.202 km2 for September. The surface temperature of the lake water was also calculated from satellite images of the Landsat 8 satellite, based on bands 10 (Thermal Infrared 1) and 11 (Thermal Infrared 2) that are sensitive to thermal radiation, as the highest surface temperature reached in June 45.49°C degrees Celsius due to the high temperatures for this month and the lowest in February 3.09°C degrees Celsius, which is one of the months in which temperatures drop to the lowest level. The utilization of remote sensing and GIS innovations has helped a lot in checking changes, whether in surface area or temperature, which saves effort, time and cost. The results of this study put decision makers in taking the necessary precautions for the seasons of water scarcity and drought to meet the community’s water needs in the areas of multiple human consumptions and at the same time take advantage of rainy seasons and water abundance to develop long-term strategic plans to maintain a sustainable water balance.
Abstract
Objective(s): To evaluate the nurses` practices for children who diagnosed with febrile convulsion.
Methodology: A quantitative research, descriptive correlational design was used in this study, the study conducted on nurses who work in Al-Diwaniya Pediatrics Teaching Hospital-Iraq for Maternal and Children period from 12th September 2021 to 10th October 2022. A non- probability (convenience) sample has been applied to obtain the study goals. The study sample was (21) nurses who participate in the study. The study tool is composed of two parts: The first part is concerned with collection of nurses socio-demographic data obta
... Show MoreL1 adaptive controller has proven to provide fast adaptation with guaranteed transients in a large variety of systems. It is commonly used for controlling systems with uncertain time-varying unknown parameters. The effectiveness of L1 adaptive controller for position control of single axis has been examined and compared with Model Reference Adaptive Controller (MRAC). The Linear servo motor is one of the main constituting elements of the x-y table which is mostly used in automation application. It is characterized by time-varying friction and disturbance.
The tracking and steady state performances of both controllers have been assessed fo
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreSolar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreOrthogonal polynomials and their moments serve as pivotal elements across various fields. Discrete Krawtchouk polynomials (DKraPs) are considered a versatile family of orthogonal polynomials and are widely used in different fields such as probability theory, signal processing, digital communications, and image processing. Various recurrence algorithms have been proposed so far to address the challenge of numerical instability for large values of orders and signal sizes. The computation of DKraP coefficients was typically computed using sequential algorithms, which are computationally extensive for large order values and polynomial sizes. To this end, this paper introduces a computationally efficient solution that utilizes the parall
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show More