Nowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject area is the optimal self-organized service placement. In this paper a heuristic-based algorithm for service placement in future networks was presented. This algorithm achieves the ideal placement of services replicas by monitoring the load within the server and its neighborhood, choosing the node that contributes with the highest received load, and finally replicating or migrating the service to it based on specific criteria, so that the distance of requests coming from clients becomes as small as possible because of placing services within nearby locations. It was proved that our proposed algorithm achieves an improved performance by meeting the services within a shorter time, a smaller bandwidth, and thus a lower communication cost. It was compared with the traditional client-server approach and the random placement algorithm. Experimental results showed that the heuristic algorithm outperforms other approaches and meets the optimal performance with different network sizes and varying load scenarios.
This paper aims to study the effect of circular Y-shaped fin arrangement to improve the low thermal response rates of a double-tube heat exchanger containing Paraffin phase change material (PCM). ANSYS software is employed to perform the computational fluid dynamic (CFD) simulations of the heat exchanger, including fluid flow, heat transfer, and the phase change process. The optimum state of the fin configuration is derived through sensitivity analysis by evaluating the geometrical parameters of the Y-shaped fin. For the same height of the fins (10 mm), the solidification time is reduced by almost 22%, and the discharging rate is enhanced by almost 26% using Y-shaped fins compared with the straight fins. The results demonstrate that the sol
... Show MoreBackground: Multidrug-resistant (MDR) enterococci have become a major problem in recent times and have been reported increasingly around the world. Lytic phages infect bacteria leading to rapid host death with limited risk of phage transduction, underlining the increasing interest in potential phage therapy in the future. Objective (s): The aim of this study is to use phage therapy as alternative approach for treatment of Enterococcus faecalis infections that recorded as MDR in Iraq to tackle this problem. Materials and Methods: Thirty E. faecalis isolates were collected from patients with different infectious diseases such as urinary tract infection (UTI), diabetic foot, septicemia, and wound infections. The isolation of specific l
... Show MoreIn this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreThe effects of temperature on an exotic aquatic snail Pomacea canaliculata (Lamarck, 1819) collected from the Shatt Al-Arab intertidal zone were investigated. A series of laboratory experiments were conducted during the summer period of 2017. Individuals of new born snails hatched in the laboratory from adult snails were collected from Shatt Al-Arab intertidal zone, and subjected to five fixed temperatures: 15, 25, 35, 40 and 45 Cº, after short term thermal acclimation. The heartbeats (HB) were counted at each temperature level. The results showed significant direct increase of HB from 15 Cº (19.8 HB/min) up to 25 Cº (76 HB/min) (P<0.05) as well as from 25 Cº to 35 Cº (93 HB/min). At 40 Cº the snail HB
... Show MoreDam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreThis work investigates generating of pure phase Faujasite-type zeolite Y at the ranges chosen for this study via a static aging step in the absence of seeds synthesis. Nano-sized crystals may result when LUDOX AS-40 is used as a silica source for gel composition of range 6 and the crystallization step may be conducted for a period of 4 to 19 hr at 100 ⁰C. Moreover, large-crystals with high crystallinity pure phase Y zeolite can be obtained at hereinabove conditions but when hydrous sodium metasilicate is used as a silica source. The other selected ranges also offer pure phase Y zeolite at the same controlled conditions.
This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation
... Show More