Crime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or living in it to assist people in recognizing between a secured and an unsecured environment. Geo-location, combined with new approaches and techniques, can be extremely useful in crime investigation. The aim is focused on comparative study between three supervised learning algorithms. Where learning used data sets to train and test it to get desired results on them. Various machine learning algorithms on the dataset of Boston city crime are Decision Tree, Naïve Bayes and Logistic Regression classifiers have been used here to predict the type of crime that happens in the area. The outputs of these methods are compared to each other to find the one model best fits this type of data with the best performance. From the results obtained, the Decision Tree demonstrated the highest result compared to Naïve Bayes and Logistic Regression.
Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreThe study aims to indicate the role of the mechanisms and principles of corporate governance in the activation of social responsibility reports, and increase disclosure, to achieve sustainability, legitimacy, and integrity of the business. Through the presentation of the conceptual framework for corporate governance and social responsibility, identify the key dimensions of social responsibility and the statement of the relationship between the mechanisms of governance and social responsibility reports in accordance with these dimensions. To prove the hypothesis research has selected a sample of listed companies in the Iraqi market for securities,
... Show MoreObjective(s): The study aims to evaluating the quality of nursing care provided to children under five years to compare between quality related to type of health sectors; to determine the quality of nursing care and to compare between such care in Baquba Health Care Sector I and II.
Methodology: A descriptive study is carried out for the period from December 15th 2019 to May 1st 2020. A purposive "non- probability" sample, of (60) staff nurse and (60) children is selected. An adopted questionnaire has been selected for the study which consists of three parts. The first part is nurses’ socio-demographic characteristic; the second part is ch
... Show MoreBackground: Appreciation of the crucial role of risk factors in the development of coronary artery disease (CAD) is one of the most significant advances in the understanding of this important disease. Extensive epidemiological research has established cigarette smoking, diabetes, hyperlipidemia, and hypertension as independent risk factors for CADObjective: To determine the prevalence of the 4 conventional risk factors(cigarette smoking, diabetes, hyperlipidemia, and hypertension) among patients with CAD and to determine the correlation of Thrombolysis in Myocardial Infarction (TIMI) risk score with the extent of coronary artery disease (CAD) in patients with unstable angina /non ST elevation myocardial infarction (UA/NSTEMI).Methods: We
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreFor the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreRecurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreThe city has normal natural state, and the man has a usual movement, change and search for the new .Also, the city has a usual change and transform in its time, place and quality (sizes)structures. The city has a solid memory diving into the past and the future and reflects The real present, and this memory has a timing layers change into real materialistic place making the city has accumulated overlapping circles which is hard to break u , and it broadcasts the lockup timing density ,in which there is no visual record precisely, it is just like((the social record)) that evaluates the un visual relationships between the components and parts of the city (community and form) in a visual quiet exhibition and transform change inside.
... Show MoreIn recent years, data centre (DC) networks have improved their rapid exchanging abilities. Software-defined networking (SDN) is presented to alternate the impression of conventional networks by segregating the control plane from the SDN data plane. The SDN presented overcomes the limitations of traditional DC networks caused by the rapidly incrementing amounts of apps, websites, data storage needs, etc. Software-defined networking data centres (SDN-DC), based on the open-flow (OF) protocol, are used to achieve superior behaviour for executing traffic load-balancing (LB) jobs. The LB function divides the traffic-flow demands between the end devices to avoid links congestion. In short, SDN is proposed to manage more operative configur
... Show More