Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.
Background: Neural tube defects (NTDs) are said to be inherited in a multifactorial fashion, i.e. genetic-environmental interaction. Maternal nutritional deficiencies had long been reported to cause NTDs, especially folate deficiency during early pregnancy. More attention had been paid to the exact mechanism by which this deficiency state causes these defects in the developing embryo. The most significant of all researches was that connecting reduced folate and increased homocysteine level in maternal serum on one hand and the risk of developing a NTD baby on the other hand. Objectives : to determine the significance of homocysteine level in Iraqi mothers who gave birth to babies with NTDs as compared to normal controls. Patients, Materials
... Show MoreCOVID-19 is a disease that has abnormal over 170 nations worldwide. The number of infected people (either sick or dead) has been growing at a worrying ratio in virtually all the affected countries. Forecasting procedures can be instructed so helping in scheming well plans and in captivating creative conclusions. These procedures measure the conditions of the previous thus allowing well forecasts around the state to arise in the future. These predictions strength helps to make contradiction of likely pressures and significances. Forecasting procedures production a very main character in elastic precise predictions. In this case study used two models in order to diagnose optimal approach by compared the outputs. This study was introduce
... Show MoreThis study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo
... Show MoreArtificial Intelligence Algorithms have been used in recent years in many scientific fields. We suggest employing flower pollination algorithm in the environmental field to find the best estimate of the semi-parametric regression function with measurement errors in the explanatory variables and the dependent variable, where measurement errors appear frequently in fields such as chemistry, biological sciences, medicine, and epidemiological studies, rather than an exact measurement. We estimate the regression function of the semi-parametric model by estimating the parametric model and estimating the non-parametric model, the parametric model is estimated by using an instrumental variables method (Wald method, Bartlett’s method, and Durbin
... Show MoreFlexible job-shop scheduling problem (FJSP) is one of the instances in flexible manufacturing systems. It is considered as a very complex to control. Hence generating a control system for this problem domain is difficult. FJSP inherits the job-shop scheduling problem characteristics. It has an additional decision level to the sequencing one which allows the operations to be processed on any machine among a set of available machines at a facility. In this article, we present Artificial Fish Swarm Algorithm with Harmony Search for solving the flexible job shop scheduling problem. It is based on the new harmony improvised from results obtained by artificial fish swarm algorithm. This improvised solution is sent to comparison to an overall best
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreAs population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some
... Show MoreFlow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show More