Preferred Language
Articles
/
bsj-6236
Optimized Artificial Neural network models to time series
...Show More Authors

        Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Access Control Security Review: Concepts and Models
...Show More Authors

Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither non-brain tissues nor

... Show More
Publication Date
Sun Nov 01 2020
Journal Name
Solid State Technology
Access Control Security Review: Concepts and Models
...Show More Authors

HS Saeed, SS Abdul-Jabbar, SG Mohammed, EA Abed, HS Ibrahem, Solid State Technology, 2020

View Publication
Publication Date
Mon Oct 02 2023
Journal Name
Journal Of Engineering
Skull Stripping Based on the Segmentation Models
...Show More Authors

Skull image separation is one of the initial procedures used to detect brain abnormalities. In an MRI image of the brain, this process involves distinguishing the tissue that makes up the brain from the tissue that does not make up the brain. Even for experienced radiologists, separating the brain from the skull is a difficult task, and the accuracy of the results can vary quite a little from one individual to the next. Therefore, skull stripping in brain magnetic resonance volume has become increasingly popular due to the requirement for a dependable, accurate, and thorough method for processing brain datasets. Furthermore, skull stripping must be performed accurately for neuroimaging diagnostic systems since neither no

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Differential evolution detection models for SMS spam
...Show More Authors

With the growth of mobile phones, short message service (SMS) became an essential text communication service. However, the low cost and ease use of SMS led to an increase in SMS Spam. In this paper, the characteristics of SMS spam has studied and a set of features has introduced to get rid of SMS spam. In addition, the problem of SMS spam detection was addressed as a clustering analysis that requires a metaheuristic algorithm to find the clustering structures. Three differential evolution variants viz DE/rand/1, jDE/rand/1, jDE/best/1, are adopted for solving the SMS spam problem. Experimental results illustrate that the jDE/best/1 produces best results over other variants in terms of accuracy, false-positive rate and false-negative

... Show More
View Publication
Scopus (9)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 15 2023
Journal Name
Al-academy
Dramatic Dialogue And Its Effectiveness In Enhancing The Characteristics Of The Alienated Character In The Television Series
...Show More Authors

Dialogue is one of the pillars of character building in the television series, through which it is possible to identify the most important characteristics and traits of the personality, in addition to its ability to reveal the most important problems at all levels. The following: (How does dialogue contribute to enhancing the traits of the alienated personality?). It therefore aims to identify the effectiveness of the dramatic dialogue in enhancing the traits of the alienated personality represented by (powerlessness, isolation, meaninglessness, objectification, non-standardization and rebellion). (The traits of the alienated character, and the second is the psychological function of the dramatic dialogue), to extract from them the main

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Sun Dec 16 2018
Journal Name
Al-academy
Deconstruction the Theatrical Time in the Expressionist Doctrine
...Show More Authors

Time affects all elements of the intellectual scene or the theatrical scene. It came along with the theatrical doctrines according to the conditions of those doctrines and their conceptual ideas or the method of their mechanisms in the application. While it is classically or realistically integrated, we see it in the expressionist doctrine inconsistent and its inconsistency makes it responsive for the deconstruction strategy. Hence the researcher entitled his study (deconstruction the theatrical time in the expressionist doctrine) so that deconstruction would be a field for his study.   The study starts with an introduction presenting the research problem, importance and objective. The theoretical framework consisted of three s

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Feb 19 2022
Journal Name
Intelligent Service Robotics
Dynamic performance of a series elastic actuator with variable stiffness logarithmic spiral spring
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Enhancement of a Power System Transient Stability Using Static Synchronous Series Compensator SSSC
...Show More Authors

Static Synchronous Series Compensator (SSSC) is a well known device for effectively regulating the active power flow in a power system. In this paper, the SSSC linearized power flow equations are incorporated into Newton-Raphson algorithm in a MATLAB written program to investigate the control of active poweer flow and the transient stability of a five bus and a thirty bus IEEE test systems, during abnormal conduction (three phase fault near buses). A comparison of the results obtained for the base case without SSSC and with it to investigate the effectiveness of the device on both of the active power flow and the transient stability.

View Publication Preview PDF