Artificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and the absolute mean square error were also used to measure the accuracy of the estimation for methods used. The important result obtained in this paper is that the optimal neural network was the Backpropagation (BP) and Recurrent neural networks (RNN) to solve time series, whether linear, semilinear, or non-linear. Besides, the result proved that the inefficiency and inaccuracy (failure) of RBF in solving nonlinear time series. However, RBF shows good efficiency in the case of linear or semi-linear time series only. It overcomes the problem of local minimum. The results showed improvements in the modern methods for time series forecasting.
Wireless Body Area Network (WBAN) is a tool that improves real-time patient health observation in hospitals, asylums, especially at home. WBAN has grown popularity in recent years due to its critical role and vast range of medical applications. Due to the sensitive nature of the patient information being transmitted through the WBAN network, security is of paramount importance. To guarantee the safe movement of data between sensor nodes and various WBAN networks, a high level of security is required in a WBAN network. This research introduces a novel technique named Integrated Grasshopper Optimization Algorithm with Artificial Neural Network (IGO-ANN) for distinguishing between trusted nodes in WBAN networks by means of a classifica
... Show MoreThe river water salinity is a major concern in many countries, and salinity can be expressed as total dissolved solids. So, the water salinity impact of the river is one of the major factors effects of water quality. Tigris river water salinity increase with streamline and time due to the decrease in the river flow and dam construction from neighboring countries. The major objective of this research to developed salinity model to study the change of salinity and its impact on the Al-Karkh, Sharq Dijla, Al-Karama, Al-Wathba, Al-Dora, and Al-Wihda water treatment plant along Tigris River in Baghdad city using artificial neural network model (ANN). The parameter used in a model built is (Turbidity, Ec, T.s, S.s, and TDS in)
... Show MoreSodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreTigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and
... Show MoreThis work is focused on the design parameters and activity of artificial human finger for seven grips. At first, obtained the ideal kinematics of human fingers motion by analyzing the grips video which were recorded using a single digital camera recorder fitted on a tripod in sagital plane while the hand is moving. Special motion analysis software (Dartfish) the finger joint angles were studied using the video recording. Then the seven grips were modeled using static torque analysis, which calculates the amount of torque applied on the fingers joint grip depending on the results of the kinematic analysis. The last step of the work was to design the actuator (Muscle Wire) of artificial finger for the seven grips in a simple design approac
... Show MoreAlzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show More