Television white spaces (TVWSs) refer to the unused part of the spectrum under the very high frequency (VHF) and ultra-high frequency (UHF) bands. TVWS are frequencies under licenced primary users (PUs) that are not being used and are available for secondary users (SUs). There are several ways of implementing TVWS in communications, one of which is the use of TVWS database (TVWSDB). The primary purpose of TVWSDB is to protect PUs from interference with SUs. There are several geolocation databases available for this purpose. However, it is unclear if those databases have the prediction feature that gives TVWSDB the capability of decreasing the number of inquiries from SUs. With this in mind, the authors present a reinforcement learning-based TVWSDB. Reinforcement learning (RL) is a machine learning technique that focuses on what has been done based on mapping situations to actions to obtain the highest reward. The learning process was conducted by trying out the actions to gain the reward instead of being told what to do. The actions may directly affect the rewards and future rewards. Based on the results, this algorithm effectively searched the most optimal channel for the SUs in query with the minimum search duration. This paper presents the advantage of using a machine learning approach in TVWSDB with an accurate and faster-searching capability for the available TVWS channels intended for SUs.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreThe paper aims at initiating and exploring the concept of extended metric known as the Strong Altering JS-metric, a stronger version of the Altering JS-metric. The interrelation of Strong Altering JS-metric with the b-metric and dislocated metric has been analyzed and some examples have been provided. Certain theorems on fixed points for expansive self-mappings in the setting of complete Strong Altering JS-metric space have also been discussed.
ABSTRACT Background:- White spot lesions are common esthetic problem that compromise the success of orthodontic treatment. This study aimed to assess white spot lesions in patients with fixed orthodontic appliance at different time intervals. Materials & Methods:- Thirty two patients (24 females and 8 males) were included in this study and they underwent clinical examination for white spot lesions using enamel decalcification index at four time intervals: (2-3 weeks after appliance insertion, 2, 4 and 6 months). Results:- The patients were free of white spot lesions at the appliance insertion visit. The mean of white spot lesions was 2.22 which were increased significantly during six months to reach 24.59 at the end of study. There was a si
... Show MoreBackground: Gugglusterone has been reported to provide protection against inflammatory and oxidative reactions of different pathological conditions. Objectives: The main object of this research work is to evaluate the renoprotective effects of guggulsterone in the prevention of cisplatin-induced nephrotoxicity in rats via assessment of renal function and histological study. Materials and methods: Rats in this study were split into four groups which comprise a control group, an induction group, a third group receiving low-dose guggulsterone, and a fourth group receiving high-dose guggulsterone. Results: a single dose of cisplatin drug has jeopardisedrenal physiology that has been demonstrated in histopathology sections and elevation
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreIn this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.