Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
In this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm
... Show MoreTime-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreThis work aimed to prepare and study the characteristic feature of lead nanoparticles (PbNPS) and follow its effects on some physiological aspects in rats.PbNPS was prepared by laser ablation of pure lead mass with a pulse of 500 and 100 mJ of energy. The results indicated that the wavelength was approximately 196 and the concentration was reported at 53,8967 mg / L. AFM, as the average diameter has been estimated at 69.93 nm. EFSEM shows the spherical shape of the particle.The experimental animals (rats) were divided into two groups, with seven rats for each one. The first group was a control and the second group was injected with 1 milliliter of PbNPS (53.8673 mg/l) per day for 45 days. Bioaccumulated lead ( in liver, spleen kidney and
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show More230 stool samples were collected from 2 state homes for (males and females) to investigate
the infection of different intestinal parasites (pathogenic and non-pathogenic).
The infection rate was higher among males 15.7% than females 6%, these rates were
increased when concentration method was employed up to 54.8% for males and 8.7% for
females significantly.
Most infected orphans were found to harbor single parasite followed by double, triple
parasites.
The highest rate of infection was found among young age group (1-5) years old, while
the older age groups got lowest rates.
Of helminthes, the commonest parasite was Hymenolepis nana 5.7% and of protozoa, the
commonest intestinal parasite was Giardia lamblia
A statistical optical potential has been used to analyze and
evaluate the neutron interaction with heavy nuclei 197Au at the
neutron energy range (1-20 MeV). Empirical formulae of the optical
potentials parameters are predicted by using ABAREX Code with
minimize accuracy compared with experimental bench work data.
The total elastic, absorption, shape elastic and total compound crosssections are calculated for different target nuclei and different
incident neutron energies to predict the appropriate optical
parameters that suit the present interaction. Also the dispersion
relation linking between real and imaginary potential is analyzed
with more accuracy. The results indicate the behavior of the
dispersion c