Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. Double input multiband Power system stabilizers (PSSs) were used to damp out low-frequency oscillations in power system. Among dual-input PSSs, PSS4B offers superior transient performance. Power system simulator for engineering (PSS/E) software was adopted to test and evaluate the dynamic performance of PSS4B model on Iraqi national grid. The results showed
... Show MoreIn this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreIn this research, carbon nanotubes (CNTs) is prepared through the Hummers method with a slight change in some of the work steps, thus, a new method has been created for preparing carbon nanotubes which is similar to the original Hummers method that is used to prepare graphene oxide. Then, the suspension carbon nanotubes is transferred to a simple electrode position platform consisting of two electrodes and the cell body for the coating and reduction of the carbon nanotubes on ITO glass which represents the cathode electrode while platinum represents the anode electrode. The deposited layer of carbon nanotubes is examined through the scanning electron microscope technique (SEM), and the images throughout the research show the
... Show MoreA resume is the first impression between you and a potential employer. Therefore, the importance of a resume can never be underestimated. Selecting the right candidates for a job within a company can be a daunting task for recruiters when they have to review hundreds of resumes. To reduce time and effort, we can use NLTK and Natural Language Processing (NLP) techniques to extract essential data from a resume. NLTK is a free, open source, community-driven project and the leading platform for building Python programs to work with human language data. To select the best resume according to the company’s requirements, an algorithm such as KNN is used. To be selected from hundreds of resumes, your resume must be one of the best. Theref
... Show MoreBackground: For patients with coronavirus disease(COVID-19), continuous positive airway pressure (CPAP) has been considered as a useful treatment. The goal of CPAP therapy is to enhance oxygenation, relieve breathing muscle strain, and maybe avoid intubation. If applied in a medical ward with a multidisciplinary approach, CPAP has the potential to reduce the burden on intensive care units. Methods: Cross-sectional design was conducted in the ALSHEFAA center for crises in Baghdad. Questionnaire filled by 80 nurses who work in Respiratory Isolation Unit who had chosen by non-probability (purposive) selection collected the data. Then the researcher used an observational checklist to evaluate nurses’ practice. The data was analyzed us
... Show MoreIn this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreThis research delts with study seven species of seeds and wild varieties wild belonging to the genus Medicago L., these species are: M. constricta Dur., M. coronata (L.) Bartal., M. intertexta (L.) Mill., M. intertexta.var. ciliaris (L.) Hyen., M. laciniata (L.) Mill., M. lupulina L., M. minima (L.) Bartal. and M. sativa L., the research involved characteristics of shapes, dimensions, colors and the nature of the surface ornamentation of seeds and also the hilum site. the seeds forms ranged between crescent, reniform and ovate, in addition there was a clear difference in seeds dimensions in height and width, while, the color has been vary between light brown to brown and dark brown. The nature of the surface ornamentation was smooth, retic
... Show Moreهدفت الدراسة الى الاهتمام واستغلال ماهو جديد من تقنيات واجهزة حديثة في تعليم السباحة الحرة عن طريق توجيه الاطفال على تطوير مداركهم واستيعابهم بالتطور التكنولوجي الذي يتناوله العالم ،قامت الباحثتان باعداد منهج تعليمي باستخدام نظارة الواقع الافتراضي وذالك بتوفير بيئة مشابهة للبيئة الحقيقية تحاكي مدارك عقول الاطفال في عالم افتراضي لتتكون صورة كاملة عن مهارات السباحة الحرة ،ومن هنا اتت المشكلة نتيجة تعل
... Show More