Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers. The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively. These evolutionary-based algorithms are known to be effective in solving optimization problems. The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated. The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features. The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively. The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate.
This paper is submitted as anew approach to simulate manufacturing control & planning system to define the problem of designing control system on the needs for materials.
Production planning & control is a total and complex operation, resides in the essence of manufacturing companies operations. The successful process of production planning and control systems is critical for the staying of manufacturing organizations in markets leading to the increasing consumer competition and which dominate most of manufacturing sectors because of the market oriented economy , thus , what has happened previously , that the companies possessed a great inventory of crude material, components, and groupings and they use in flexible techni
... Show MoreThe lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe2H2O4) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe2H2O4 to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb−1 and 0.922 °·ppb
In the last years, new non-invasively laser methods were used to detect breast tumors for pre- and postmenopausal females. The methods based on using laser radiation are safer than the other daily used methods for breast tumor detection like X-ray mammography, CT-scanner, and nuclear medicine.
One of these new methods is called FDPM (Frequency Domain Photon Migration). It is based on the modulation of laser beam by variable frequency sinusoidal waves. The modulated laser radiations illuminate the breast tissue and received from opposite side.
In this paper the amplitude and the phase shift of the received signal were calculated according to the orig
... Show MoreThe present study was conducted to estimate the incidence, clinical findings, cytological and histopathological characteristics of spontaneously occurring skin neoplasms in dogs. A total of 40 grossly suspected cases of cutaneous and subcutaneous tumors were gathered during the period from July 2016 to August 2018 from male and female dogs in Baghdad city. Dogs with skin neoplasia revealed various clinical signs, and their ages were older than 5 years to 15 years. German shepherd 30% followed by Terrier dogs 25% were more influenced than other breeds. Concerning tumor features, the majority of neoplasms had solitary lesion 70%, regular shapes 65% with black color 55%. The tumors frequently occurred on fore-limbs and abdomen, and 80% of them
... Show More