Preferred Language
Articles
/
bsj-6145
Human Face Recognition Based on Local Ternary Pattern and Singular Value Decomposition
...Show More Authors

There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into the main sixteen blocks.  Each block of these sixteen blocks is divided into more to thirty sub-blocks. For each sub-block, the SVD transformation is applied, and the norm of the diagonal matrix is calculated, which is used to create the 16x30 feature matrix. The sub-blocks of two images, (thirty elements in the main block) are compared with others using the Euclidean distance.  The minimum value for each main block is selected to be one feature input to the neural network. Classification is implemented by a backpropagation neural network, where a 16-feature matrix is used as input to the neural network. The performance of the current proposal was up to 97% when using the FEI (Brazilian) database. Moreover, the performance of this study is promised when compared with recent state-of-the-art approaches and it solves some of the challenges such as illumination and facial expression.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Al–bahith Al–a'alami
Spiritual Communication in Sufi Discourse- A communicative –Semiotic Approach to the Sufi Symbolic Image
...Show More Authors

This paper deals with a central issue in the field of human communication and reveals the roaming monitoring of the incitement and hatred speech and violence in media, its language and its methods. In this paper, the researcher seeks to provide a scientific framework for the nature of the discourse of incitement, hatred speech, violence, and the role that media can play in solving conflicts with their different dimensions and in building community peace and preventing the emergence of conflicts among different parties and in different environments. In this paper, the following themes are discussed:
The root of the discourse of hatred and incitement
The nature and dimensions of the discourse of incitement and hatred speech
The n

... Show More
View Publication
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Weighted Least Squares Estimation of the Effect of Wastewater Pollution of Tigris River / Wasit Governorate
...Show More Authors

Abstract

The analysis of Least Squares: LS is often unsuccessful in the case of outliers ​​in the studied phenomena. OLS will lose their properties and then lose the property of Beast Linear Unbiased Estimator (BLUE), because of the Outliers have a bad effect on the phenomenon. To address this problem, new statistical methods have been developed so that they are not easily affected by outliers. These methods are characterized by robustness or (resistance). The Least Trimmed Squares: LTS method was therefore a good alternative to achieving more feasible results and optimization. However, it is possible to assume weights that take into consideration the location of the outliers ​​in the data and det

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 06 2022
Journal Name
Ijci. International Journal Of Computers And Information
Techniques for DDoS Attack in SDN: A Comparative Study
...Show More Authors

Abstract Software-Defined Networking (commonly referred to as SDN) is a newer paradigm that develops the concept of a software-driven network by separating data and control planes. It can handle the traditional network problems. However, this excellent architecture is subjected to various security threats. One of these issues is the distributed denial of service (DDoS) attack, which is difficult to contain in this kind of software-based network. Several security solutions have been proposed recently to secure SDN against DDoS attacks. This paper aims to analyze and discuss machine learning-based systems for SDN security networks from DDoS attack. The results have indicated that the algorithms for machine learning can be used to detect DDoS

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Tue Oct 30 2018
Journal Name
Journal Of Engineering
Accuracy Assessment of Stonex X-300 Laser Scanner Cameras
...Show More Authors

Assessment the actual accuracy of laboratory devices prior to first use is very important to know the capabilities of such devices and employ them in multiple domains. As the manual of the device provides information and values in laboratory conditions for the accuracy of these devices, thus the actual evaluation process is necessary.

In this paper, the accuracy of laser scanner (stonex X-300) cameras were evaluated, so that those cameras attached to the device and lead supporting role in it. This is particularly because the device manual did not contain sufficient information about those cameras.

To know the accuracy when using these cameras in close range photogrammetry, laser scanning (stonex X-300) de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE
...Show More Authors

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (48)
Scopus
Publication Date
Mon Dec 01 2025
Journal Name
Results In Engineering
Fatigue performance of asphalt binders modified with varying nanomaterials
...Show More Authors

This study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-tem

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model
...Show More Authors

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

View Publication
Crossref (4)
Crossref
Publication Date
Wed Sep 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Digital Rock Samples Porosity Analysis by OTSU Thresholding Technique Using MATLAB
...Show More Authors

Porosity plays an essential role in petroleum engineering. It controls fluid storage in aquifers, connectivity of the pore structure control fluid flow through reservoir formations. To quantify the relationships between porosity, storage, transport and rock properties, however, the pore structure must be measured and quantitatively described. Porosity estimation of digital image utilizing image processing essential for the reservoir rock analysis since the sample 2D porosity briefly described. The regular procedure utilizes the binarization process, which uses the pixel value threshold to convert the color and grayscale images to binary images. The idea is to accommodate the blue regions entirely with pores and transform it to white in r

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Wed Jun 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
A Comparison between robust methods in canonical correlation by using empirical influence function
...Show More Authors

       Canonical correlation analysis is one of the common methods for analyzing data and know the relationship between two sets of variables under study, as it depends on the process of analyzing the variance matrix or the correlation matrix. Researchers resort to the use of many methods to estimate canonical correlation (CC); some are biased for outliers, and others are resistant to those values; in addition, there are standards that check the efficiency of estimation methods.

In our research, we dealt with robust estimation methods that depend on the correlation matrix in the analysis process to obtain a robust canonical correlation coefficient, which is the method of Biwe

... Show More
View Publication Preview PDF
Crossref