There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into the main sixteen blocks. Each block of these sixteen blocks is divided into more to thirty sub-blocks. For each sub-block, the SVD transformation is applied, and the norm of the diagonal matrix is calculated, which is used to create the 16x30 feature matrix. The sub-blocks of two images, (thirty elements in the main block) are compared with others using the Euclidean distance. The minimum value for each main block is selected to be one feature input to the neural network. Classification is implemented by a backpropagation neural network, where a 16-feature matrix is used as input to the neural network. The performance of the current proposal was up to 97% when using the FEI (Brazilian) database. Moreover, the performance of this study is promised when compared with recent state-of-the-art approaches and it solves some of the challenges such as illumination and facial expression.
The study aimed to determine the impact of energy for the north and south magnetic poles on the the growth of bacteria isolated from cases of tooth decay, 68 swabs were collected from surfaces of faulty tooth, the detected of Staphylococcus aureus
... Show MoreThis research highlights the light on the general framework of accounting discloser in the Islamic banks, and show the types and the concepts of Cost Efficiency, In this present study, the sample included Fourteen Islamic banks, where the data was collected from the annual financial reports. Accordingly, the study in order to achieve the aims and access to the results based on the analytical method and the descriptive analysis, and conducted a Simple & Multiple Linear Regression analysis, in order to test hypotheses of the research by using of statistical analysis software (SPSS). The research has arrived to many results such as: the commitment of Islamic banks working in the Kingdome of Bahrain (Wholesale) to the requirements of the
... Show MoreEndoglucanase produced from Aspergillus flavus was purified by several steps including precipitation with 25 % ammonium sulphate followed by Ion –exchange chromatography, the obtained specific activity was 377.35 U/ mg protein, with a yield of 51.32 % .This step was followed by gel filtration chromatography (Sepharose -6B), when a value of specific activity was 400 U/ mg protein, with a yield of 48 %. Certain properties of this purified enzyme were investigated, the optimum pH of activity was 7 and the pH of its stability was 4.5, while the temperature stability was 40 °C for 60 min. The enzyme retained 100% of its original activity after incubation at 40 °C for 60 min; the optimum temperature for enzyme activity was 40 °C.
The hydrolysis of urea by the enzyme urease is significant for increasing the irroles in human pathogenicity, biocementation, soil fertilizer, and subsequently in soil improvement. This study devoted to the isolation of urease from urea-rich soil samples collected from seven different locations. Isolation of the various bacterial species was conducted using nutrient agar. The identity of isolated urease was based on morphological characteristics and standard microbiological and biochemical procedures. The urease producing strains of bacteria were obtained using the urease hydrolysis test. The bacterial isolates produced from soil samples collected from different environments and treat
Twenty isolates of Serratia marcescens were isolated from inflammation of the urinary tract (UTI)., These isolates were found to produce hemolysin as indicated by blood agar plates in which the hemolysis of red blood cell indicate a positive result. Isolates were selected according to their hemolysis activity by measuring absorbance of hemoglobin at 405 nm that released from red blood cell. Hemolysin was completely purified using 50-75% saturation of ammonium sulphate followed by ion exchange chromatography with DEAE-cellulose then gel filtration chromatography by sepharose 4B. Accordingly molecular weight for the purified toxin was estimated as 45 KD.
Beta-lactamase was purified from local isolate Klebsiella pneumonia by several steps included precipitation with ammonium sulphate at 20-40% saturation, DEAE- ion exchange chromatography and gel filtration on Sephacryl S-200 column. The obtained purification fold and recovery were 32.66; 47.04% respectively. The characterization of the purified beta-lactamase showed that the molecular weight was about 4000 daltons as determined by gel filtration.Purified enzyme had an optimal pH of 7 for activity and an optimal stability between pH 6.5-7.5, results shows that the optimal temperature appear to be 35 ? C .During storage the enzyme retained 72% at -20 ? C and retained 25% of the activity at the same period at 4 ? C.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More