With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. This research results showed that rapidly evolved Artificial Intelligence (AI) -based image analysis can accomplish high accuracy in detecting coronavirus infection as well as quantification and illness burden monitoring.
The coronavirus-19 (COVID-19) pandemic, triggered by the severe acute respiratory syndrome coronavirus 2, has affected over 100 million people and killed around 2 million individuals. One of the most common chronic illnesses in the world is diabetes, which greatly raises the risk of hospitalization and death for COVID-19 patients.
This study aims to analyze the novel coronavirus's general characteristics and shed light on COVID-19 and its management in diabetic individuals by measuring some metabolic and inflammatory factors in type 2 diabetic pa
The objective of this study was to assess the impact of the COVID-19 pandemic on healthcare providers (HCPs) at personal and professional levels.
This was a cross-sectional descriptive study. It was conducted using an electronic format survey through Qualtrics Survey Software in English. The target participants were HCPs working in any healthcare setting across Iraq. The survey was distributed via two professional Facebook groups between 7 April and 7 May 2020. The survey items were adopted with modifications from three previous studies of Severe Acute Respiratory Syndrome (SARS) and Avia
Background: Coronavirus, which causes respiratory illness, has been a public health issue in recent decades. Because the clinical symptoms of infection are not always specific, it is difficult to expose all suspects to qualitative testing in order to confirm or rule out infection as a test. Methods: According to the scientific studies and investigations, seventy-three results of scientific articles and research were obtained using PubMed, Medline, Research gate and Google Scholar. The research keywords used were COVID-19, coronavirus, blood parameters, and saliva. Results: This review provides a report on the changes in the blood and saliva tests of those who are infected with the COVID-19.COVID-19 is a systemic infection that has
... Show MoreAbstract
The research aims to diagnose the reality of applying the eighth requirement (operation) of the business continuity management system according to the international standard (ISO 22301: 2019), in the General Tax Authority, which is related to planning, implementing and controlling specific processes and procedures to address risks and opportunities, and the research adopted the checklist of the standard ( ISO 22301: 2019), in obtaining information, to measure the extent of application and documentation, the percentages and the weighted arithmetic mean were relied upon, and the research reached a set of result
... Show MoreWellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreThis study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur
... Show More