Preferred Language
Articles
/
bsj-5965
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network
...Show More Authors

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  This research results showed that rapidly evolved Artificial Intelligence (AI) -based image analysis can accomplish high accuracy in detecting coronavirus infection as well as quantification and illness burden monitoring.

Scopus Clarivate Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of bubble size in Bubble columns using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for bubble size prediction in bubble columns. However these correlations fail to predict bubble diameter over a wide range of conditions. Based on a data bank of around 230 measurements collected from the open literature, a correlation for bubble sizes in the homogenous region in bubble columns was derived using Artificial Neural Network (ANN) modeling. The bubble diameter was found to be a function of six parameters: gas velocity, column diameter, diameter of orifice, liquid density, liquid viscosity and liquid surface tension. Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 7.3 % and correlation coefficient of 92.2%. A

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 01 2007
Journal Name
Al-khwarizmi Engineering Journal
The Inverse Solution Of Dexterous Robot By Using Neural Networks
...Show More Authors

The inverse kinematics of redundant manipulators has infinite solutions by using conventional methods, so that, this work presents applicability of intelligent tool (artificial neural network ANN) for finding one desired solution from these solutions. The inverse analysis and trajectory planning of a three link redundant planar robot have been studied in this work using a proposed dual neural networks model (DNNM), which shows a predictable time decreasing in the training session. The effect of the number of the training sets on the DNNM output and the number of NN layers have been studied. Several trajectories have been implemented using point to point trajectory planning algorithm with DNNM and the result shows good accuracy of the end

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Iop Conference Series: Earth And Environmental Science
Assessment of X-Ray Effects on HF Radio Communications
...Show More Authors
Abstract<p>This study aims to determine the effect of x-ray radiation resulting from solar flares in high-frequency radio wave communications through the ionosphere and to study the radio blackout events that occur over Iraq, located within (38,28) latitude, and (38,49) longitude. Using X-ray data during strong X flares and radio wave absorption data across the D ionosphere for 10 years from 2012 to 2021. The study concluded that there were 43 events of x-flare, most of which were during years of high solar activity. All of these flares produced X-rays that caused a radio blackout, R3 and only 13 events affected Iraq.</p>
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of the Corona Pandemic (covid-19) on the Quality of the Auditor’s Reporting by Application to Iraqi Economic Units
...Show More Authors

Abstract:

     The research aims to shed light on the Corona pandemic and its repercussions on the global economy in general, and on the activities of Iraqi economic units in particular. It also aims to show the impact of the auditor’s reporting on the effects of the Corona pandemic on economic units and its reflection on the quality of his reporting. To achieve the objectives of the research, the researcher prepared a questionnaire according to the five-point Likert scale and took into account in its preparation compatibility with the characteristics of the study community, and that the target community for this questionnaire are the economic units listed in the Iraq Stock Exchange that have complet

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 27 2022
Journal Name
2022 International Conference On Engineering And Emerging Technologies (iceet)
Telemedicine Framework in COVID-19 Pandemic
...Show More Authors

View Publication
Scopus (14)
Crossref (9)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Speech Age Estimation Using a Ranking Convolutional Neural Network
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Tue Jan 17 2017
Journal Name
International Journal Of Science And Research (ijsr)
Detection System of Varicose Disease using Probabilistic Neural Network
...Show More Authors

Publication Date
Tue Dec 31 2024
Journal Name
Journal Of Soft Computing And Computer Applications
Enhancing Image Classification Using a Convolutional Neural Network Model
...Show More Authors

In recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.

... Show More
View Publication
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

Preview PDF
Crossref (1)
Crossref